
Practical Protection for Personal Storage in the Cloud

Neal H. Walfield Paul T. Stanton John Linwood Griffin Randal Burns
Johns Hopkins University

{neal,pauls,jlg,randal}@cs.jhu.edu

ABSTRACT
We present a storage management framework for Web 2.0
services that places users back in control of their data. Cur-
rent Web services complicate data management due to data
lock-in and lack usable protection mechanisms, which makes
cross-service sharing risky. Our framework allows multiple
Web services shared access to a single copy of data that
resides on a personal storage repository, which the user ac-
quires from a cloud storage provider. Access control is based
on hierarchically, filtered views, which simplify cross-cutting
policies, and enable least privilege management. We also in-
tegrate a powerbox [16], which allows applications to request
additional authority at run time thereby enabling applica-
tions running under a least privilege regime to provide useful
open and save as dialogs.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; D.4.7
[Organization and Design]: Distributed systems

General Terms
Design, Security

Keywords
Access Control, Cloud, Web Services, Data Management

1. INTRODUCTION
Web 2.0 services expect to own the data that they use and

expect users to only access that data via their interfaces.
These expectations complicate data management and limit
sharing. Data management is complicated because data
can usually only be accessed via non-standard interfaces,
which make data extraction difficult (data lock-in) [2], be-
cause data are dispersed among services, which makes find-
ing data difficult (data spew), and because the assumption
that a service is the sole user of data does not hold resulting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EUROSEC ’10, Paris, France
Copyright 2010 ACM 978-1-4503-0059-9/10/0004 ...$10.00.

in multiple copies of data, which become incoherent (version
drift). The lack of standard interfaces and useful access con-
trol mechanisms limits sharing. Currently, a user enables
one service (e.g., Facebook) to access data managed by an-
other service (e.g., her Hotmail address book) by providing
the former her credentials for the latter. This gives the first
service full access to the second account including all of the
user’s data and the ability to impersonate the user. These
are serious security concerns.

Web services offer users two convincing features over local
applications: they facilitate user mobility by providing ac-
cess to the same application state independent of device and
location, and they facilitate sharing and collaboration. Cur-
rently, these advantages come at the cost of more difficult
data management and poor security. This hurts Web 2.0’s
value proposition: these problems discourage the use of ex-
perimental or unreputed services, which translates to con-
servative user behavior and slow industry innovation.

Having services use shared storage would solve the data
management issues, but current techniques lack adequate
protection mechanisms. Services could use user-provided
storage, which is possible today given inexpensive services,
such as Amazon S3, Nirvanix, and Rackspace. These ser-
vices, however, provide protection mechanisms that are dif-
ficult to use in a manner consistent with the principle of
least privilege (POLP) [13]. S3 and Nirvanix provide ACLs,
but these make access rights management in a dynamic en-
vironment an ongoing chore for users. This critique applies
equally well to capabilities when they refer to files, e.g., as
in Tahoe [18]. S3 allows the use of an external reference
monitor, which could be used to realize any security policy,
but this mechiams is too low-level for even power users.

In this paper, we implement a framework that solves the
data management and security problems. Our framework
relocates storage to a user-managed storage repository. A
user provides services access to the storage area. Protection
is based on hierarchical, filtered views of the name space.
Similar filtering techniques have been used in managing ac-
cess in databases [5], and CloudViews has proposed them
for use in the cloud, albeit only among services in a single
cloud [4]. To delegate access, a user creates a principal, asso-
ciates a view with it, and provides the principal’s credentials
to the service. A view consists of access rights and a filter,
for which we use regular expressions. A principal can later
be granted additional authority or have some authority re-
voked by adding or removing views. We think that users can
easily conceptualize views and that they lend themselves to
be used in a manner that approximates POLP. Views also



have the advantage that they allow access to objects when
they come into existence. Further, views ensure consistent
naming of objects in all services.

To further improve usability, our implementation includes
a powerbox [16], which enables an application to request
more authority at run-time. A powerbox runs with the
user’s authority on the user’s computer. Using a power-
box in place of an application-implemented open or save-as
dialog box allows the the user to use any file, not just those
that the service is authorized to see, which is significantly
constrained when its authority is managed consistent with
the POLP. The powerbox simplifies management because,
when the user selects a file in the powerbox, the powerbox
delegates access to the application. Thus, the user’s desig-
nation becomes an authorization.

Our S4 prototype consists of approximately 4,000 lines of
Python. It extends S3’s REST interface and is mostly back-
wards compatible. The S3 programs that we tested work
without modification.

2. SCENARIOS
We use two running examples. The first involves Alice, an

avid user of social networking services. The second considers
Bob who creates documents, which mash up data from mul-
tiple sources. He sends these documents to his colleagues as
attachments using Hotmail.

Alice uses multiple social networking services including
Facebook and Last.fm. She regularly updates her profile
picture on all of her social networking services. Currently,
she has to log in to each service. She finds this repetitive.
Alice also uses Hotmail. Alice would like her social network-
ing services to automatically identify potential connections
using her address book. She often adds new contacts to
her address book and would like those changes to propagate
promptly. Likewise, she would like her services to automat-
ically update her Hotmail address book based on contact
information that her connections provide.

Bob creates documents using Google Docs. He often in-
cludes photos, many of which he stores on Flickr. To incor-
porate a file stored on Flickr, Bob has to download the file
to his local computer and then upload it to Google Docs. He
would prefer to be able to access the file directly from Google
Docs. The copying also creates problems: if he modifies the
copy in Google Docs, he has to manually synchronize the
changes with Flickr. Sometimes, he forgets. The problem
becomes worse when multiple copies have different sets of
edits, which he merges manually.

3. TOWARD PER USER REPOSITORIES
Web services expect that they own the data they use

and that users access data through the provided interfaces.
These expectations lead to an architecture that makes data
management hard and sharing difficult and dangerous.

3.1 Data Management Issues
Most Web services do not make accessing and modifying

user data easy; they view their copy as the sole authoritative
copy. This is illustrated in Figure 1. This results in a form
of data lock-in [2] in which users have a limited ability to
access and modify their data. Consider how Alice updates
her profile picture on her social networking services: she logs
in to each service, navigates to the change-profile-picture

Storage Storage Storage

Hotmail Flickr GDocs

User User User User

Figure 1: Web 2.0 services today: each service has
its own storage, which users cannot access directly.

dialog, and then uploads a picture stored on her local hard
drive. There is no way for Alice to designate a picture on
the Web as being her current profile picture and have all
services automatically update her picture when it changes.

Accessing and modifying data is not only hard for users,
it is also hard for programmers. To write a program to
change Alice’s profile picture on her social networking ser-
vices would require writing code specific to each service—
services have their own API. As a consequence, tools tend to
support only the most popular services. Although a stan-
dard API would help, applications would still need to use
distributed version control algorithms for updating shared
state, which is non-trivial even if ignoring access control.

This attitude toward user data also results in data spew:
the inability to maintain a coherent view of data. If Alice
wants to use a photo for her profile picture, she has to re-
member which service stores it. This is not a problem if
all photos are managed by a single service. However, if she
uses multiple photo management services, the data type is
no longer an indicator for the service.

Another problem that can occur is version drift, which is
when multiple copies of a file become out of sync. This arises
because users must manually synchronize changes across all
copies. When Bob copies a picture from Flickr to Google
Docs and then edits it, he has to manually update the other
copy. If he forgets and later the copy on Flickr is changed,
e.g., it is tagged, he now has to manually merge the changes.

3.2 Security Issues
Web services lack adequate protection mechanisms for

sharing data with other services in a manner consistent with
POLP. Consider again Alice, who would like Facebook to
monitor her Hotmail address book. She could use Face-
book’s Friend Finder. However, it requires her to enter her
Hotmail user name and password: there is no way for her to
just give Friend Finder access to her address book; her cre-
dentials give Friend Finder the authority to not only access
her address book but also to read her email and impersonate
her by sending email from her account. Alice’s only avail-
able protection mechanism is a simple binary decision: give
Friend Finder access to all of her Hotmail authority or none.
This decision can be rephrased as: participate and be vulner-
able or be safe but do not participate [15]. Although Alice
might trust Facebook, this lack of a fine-grained sharing API
impedes experimentation with unreputed services. Even if
Hotmail supported fine-grained access control, this is only
one service. All other services would need to be changed to
support similar APIs. This problem could instead be ad-
dressed by the relatively few storage providers.



Hotmail Flickr GDocs

StorageUser

Figure 2: Web 2.0 services using a user-specified,
user-controlled storage repository.

3.3 Per-User Repositories
A solution that solves the data management problems is

one that centralizes a user’s data with a storage provider,
as shown in Figure 2. This creates a star topology: the
user’s storage repository is the hub, and services share data
by way of the storage repository. A user authorizes services
to access a file. When a service changes a file, it updates
the copy on the storage repository. Services interested in
changes to a file monitor that file. When they notice that a
file has changed, they integrate the changes.

This architecture does not preclude services using their
own storage to cache user data; it only requires that the
user’s repository hold the authoritative versions of the user’s
objects. This mean services must promptly integrate and
propagate changes.

Preventing services from keeping local copies of data would
hurt performance. For instance, if a service had to fetch data
from a user’s storage repository every time the file is re-
quested, this would add bandwidth costs and latency. Also,
services often precompute data to save time, e.g., Flickr
stores a number of scaled versions of an image. Having to
compute scaled versions on demand would be expensive.

3.4 Requirements
We distill these observations into a set of requirements for

the protection mechanisms of the system:
1. A user can delegate access to just those objects that a

service needs to realize the user’s intents (POLP);
2. A user can revoke a service’s subsequent access to any

object at any time;
3. A service can transitively delegate access to an object

to a third-party (e.g., Facebook can delegate access to
an object to an application);

4. A principal can revoke a principal’s access to an object
if and only if it or a principal it dominates previously
delegated access to that principal and that access was
not subsequently revoked;

5. A principal can revoke another principal’s access to
an object without also revoking other principals’ ac-
cess (e.g., a user can revoke Google Doc’s access to an
object without also revoking Flickr’s).

6. The API should be identical for all principals (trans-
parent interposition);

7. When a principal revokes a delegation, any delegations
based on that delegation are also revoked;

8. A user’s explicit interactions with the security manager
are minimized (usable security);

9. An object has the same name in all name spaces it
appears in (consistent naming); and,

10. A user can delegate access to not-yet-existing objects.
The first seven requirements deal with protection and re-

quire fine-grained, transitive delegation and subsequent re-

vocation. The remaining concern usability. The security of
the system should be as invisible to the user as possible.

The consistent naming requirement arises because the names
of the objects benefit users and are presented to the user by
the service. If services have their own names for objects, it
will be difficult for the user to find the objects in which he
is interested. This is a form of data spew.

The requirement that allows delegating access to objects
that do not yet exist enables useful security policies. Con-
sider Bob who wants Flickr to access all of his public photos.
He should be able to articulate this policy and whenever he
uploads photos, they should be immediately accessible to
Flickr; Bob should not have to implement this policy man-
ually. Moreover, it is conceivable that the user does not
even interact with the device when it is uploading the data:
Bob’s mobile phone might push photos when there is inex-
pensive connectivity. Any mechanism that enables future
delegations must be designed carefully as a policy may in-
advertently share data that should not be shared.

4. RELATED WORK

File-Oriented Access Control: Most common protec-
tion mechanisms are approximate realizations of Lampson’s
Access Matrix [8]. These include distributed file systems
such as NFS, AFS [14], SFS [7], Amazon’s S3 [1], and Nir-
vanix [10], which provide ACLs, as well as CapaFS [12],
Tahoe [18], and Secure FS [6], which are capability based.

These systems require that access be delegated one file
or directory at a time, which does not match how users
conceive of security policies. Consider Bob. He would like
to give Flickr access to his public photos. Granting access
on a file-by-file basis is tedious and requires constant care:
he must update his security policy whenever he adds new
public photos. Using directories, Bob could partition his
files and grant Flickr access to a directory. This separation
is inconvenient if the security policy does not match how he
wants to structure his name space: Bob may want to place
each photo set in its own directory, but does not deem all
photos in a set to be either public or private.

An important secondary concern is delegation. ACL sys-
tems do not track modifications to an object’s ACL. Without
this feature, such systems cannot simultaneously support
transitive delegation and revocation (requirements 3 and 4):
a principal that can modify an ACL can increase its own
authority and revoke any other principal’s access to the ob-
ject. Capabilities do not have this problem. However, to
support the revocation requirements, the capability system
must support caretakers [11] (proxies that indirect access to
the object and thus enable fine-grained revocation). Neither
CapaFS [12], Tahoe [18], nor Secure FS [6] support this.

Another secondary concern is the ability to work across
administrative domains, i.e., with remote principals [9]. This
requires global principals. SFS overcomes this by identify-
ing users through user ids and self-certifying hostnames [7].
Capability systems using sparse capabilities solve this nat-
urally. However, if capabilities are exposed to the user, it
raises a usability concern: annotating a capability and hand-
ing it to the delegatee are separate steps. If the user does
not rigorously perform both, e.g., by giving the same capa-
bility to multiple principals, the security monitor will not
have an up-to-date view of the delegations, which will lead
to confusion and mistakes.



View-Oriented Access Control: View-based access con-
trol has been used in the database community [5]. The idea
is that a user grants permission to execute a database query
statement, rather than to specific tables or columns. The
resulting view is compact and enables access to data as it
becomes available (requirement 10). This is the approach
that we take. The only distributed file system, which we
know of, that uses this technique is CloudViews [4]. It
uses cryptographically signed views. We extend CloudViews
by enabling modification of existing views without interac-
tion with the delegatee and transitive delegation. We also
address usability concerns for non-technical users and con-
sider cross-cloud issues (CloudViews considers sharing only
among services in the same cloud).

Powerbox: A powerbox, first introduced in CapDesk [16],
runs with the user’s authority and allows a service to display
open and save-as dialog boxes that have access to all of the
user’s files, not just those that the service can access. Un-
like for a Web server, for which it is often possible to know a
priori exactly what authority it needs, the authority that a
word processor needs is dynamic—it depends on the user’s
intents at the moment. To be consistent with POLP, a word
processor should only have access to those files the user cur-
rently wants to edit. To allow a program to run with just
that authority and yet still be able to display useful open and
save-as dialog boxes, an application makes an RPC to the
powerbox, which displays an open or save-as dialog box on
its behalf but with the user’s full authority. When the user
selects a file, the powerbox returns a capability referencing
the object to the application.

The powerbox has been integrated into Secure FS [6] to
enable applications that run in the browser to access local
files. They do not support a distributed file system or remote
applications.

Malicious Storage Provider: Tahoe protects against a
malicious storage provider by including an encryption key,
which is never exposed to the storage provider, in the capa-
bility [18]. Since the storage provider does not know the real
names of files or have access to file metadata, it appears this
design may be incompatible with view-based access control.

5. S4
In this section, we describe a framework and API called

S4 based on hierarchical, filtered views. We think that the
model is easy for users to understand and that it satis-
fies our protection and security requirements. S4 extends
Amazon S3’s API and is mostly compatible with it. For in-
stance, the same authentication mechanism is used (private
key signatures), and the same interface for accessing objects.
Given the limited space, we focus on our enhancements to
the protection-related functionality.

Our S4 prototype consists of approximately 4,000 lines of
Python (according to David A. Wheeler’s SLOCCount). It
supports all of the access control mechanisms described in
this paper and includes much of the powerbox functionality.

S4 builds on S3’s REST interface and is mostly backwards
compatible with it (the only major missing piece is S3’s ACL
support). Services written to use this interface work with
S4 without modification; taking advantage of the powerbox
requires explicit support from Web services.

principal.create (pet_name) → (credentials)
principal.delete (child)
principal.list ()
→ ((credentials, pet_name, view...), ...)

view := <rights, filter...>

Table 1: Principal Management Methods

5.1 Principals
An S4 user first obtains an account from a storage provider.

The storage provider gives the user authentication creden-
tials for the account’s primary principal, which has access
to all of the user’s storage and objects.

A user only shares his credentials with his security monitor
and powerbox; other programs are given separate credentials
and less authority. To do this, a user creates a subordinate
principal by issuing the principal.create RPC to the stor-
age server. This RPC causes the storage server to create a
new principal that is subordinate to the principal that issued
the RPC (thus, any principal can create subordinate princi-
pals). The method includes a so-called pet name parameter.
This allows a user to associate a private, memorable identi-
fier with the principal’s public key, which is hard for a human
to remember [17]; the storage server does not assign the pet
name any semantic meaning. The server’s response includes
the credentials for the new principal, which the user passes
to the service by copying and pasting them into a Web form.

The principal.delete RPC deletes a principal. Only a
principal’s parent may execute this RPC. When a principal
is deleted, its authorization credentials are invalidated. Fur-
ther, any principals subordinate to it are also removed; this
RPC removes the subtree rooted at the principal.

A principal can enumerate its children using the princi-

pal.list RPC. This RPC is invoked on the principal and
information about subordinate principals is returned. For
each subordinate principal, its access key, its parent-assigned
pet name, and any associated views are returned.

The principal management methods are shown in Table 1.

5.2 Hierarchical, Filtered Views
A principal can delegate access to a subordinate principal

by associating a view with the principal. A view is a filter
on the parent’s name space and thus its authority. Specif-
ically, it is a set of access rights and a set of regular ex-
pressions. Instead of regular expressions, Unix globs or SQL
select statements could be used. Those files that are acces-
sible to the parent and match all the regular expressions are
made accessible to the child with the specified access rights.
A view is installed using the principal.delegate RPC. It
is possible to have more than one view associated with a
principal. Initially, a subordinate principal has no author-
ity: it has no associated views and can neither access nor
create any objects.

Access control is based on hierarchical evaluation and fil-
tering, which enables creating increasingly restricted views
of a name space. The following algorithm is used for access
checks: for each view, determine if the access rights include
the requested access type and if the name matches all of the
regular expressions. If no view satisfies this test, access is
denied. Otherwise, the same procedure is carried out us-
ing each of the principal’s ancestors. If all of the principal’s
ancestors may access the object with the requested permis-



principal.delegate (child, view. . . )
principal.revoke (child, view. . . )

Table 2: View Management Methods

sion, access is granted. The intuition is that a parent can
only grant as much access as it has, not more. Thus, when
a parent indicates that a child can access all objects, this
means that the child can access all objects that the parent
can access, not that the child can access all files in the file
system, which is access that the parent cannot grant.

A possible issue with this design is that it does not allow
cross-hierarchy delegations. For instance, Alice cannot di-
rectly delegate access to Bob’s principal. Instead, she must
create a new Alice-Bob principal. We do not think that this
is a limitation in practice; we expect most sharing to do be
done via the Web services. Note that since principals are
represented to users as strings, it is possible to make the
string a URL (similar to a webkey [3]), which when entered
in a browser loads an interface to browse the accessible files.

Permission checks can be optimized. Whether using reg-
ular expressions as we do in S4, Unix globs or SQL query
statements, it should be possible to parallelize their evalu-
ation. Also, it should be possible to cache compiled forms
near the data structure associated with the principal. In-
deed, all filters can be combined thereby avoiding having to
walk the tree. The trade-off in this case is that when a prin-
cipal’s views are updated, it, as well as all of its descendants,
must have their cached compilations invalidated. We expect
that this is infrequent relative to permission checks.

To revoke access, a principal uses the principal.revoke

method. The indicated view must match an existing view
exactly; views cannot be modified in place. To modify a
view, it must be revoked and a new view must be installed.
This is not atomic, however, if atomicity is required, a prin-

cipal.filter_replace method could be provided.
The view management are summarized in Table 2.

Describing Filters: We do not expect most users to de-
scribe policies using regular expressions. Instead, users in-
teract with the security monitor or powerbox, which presents
a graphical user interface. The GUI allows users to describe
their policy using graphical elements (e.g., a file selector),
which the monitor translates to an appropriate regular ex-
pression.

Visualizing Filters: Figure 3 shows a screenshot of a se-
curity manager, which we have implemented. The manager
is a user interface for managing principals and access rights.
To better enable the user to understand what a principal
may or may not access, when the user selects a principal or
a regular expression, the security manager highlights the ac-
cessible objects. We use red to mean that the principal has
no access, green to mean that the principal has some access,
and yellow to mean that it may access one or more objects
below the directory. Our implementation does not currently
provide a way to distinguish between read and write access.
This could be done using an icon. The interface shows only
the files that a principal can access; it does not show files
that a principal may create or that could become accessible.
While this would be valuable, it is unclear how to display
this information.

Figure 3: Screenshot of the security manager. The
user has two subordinate principals. The gmail prin-
cipal is selected. Objects that it may access are in
green (here, mail), those that is may not are in red
(pictures). Yellow indicates directories which con-
tain some accessible files (bucket).

5.3 Powerbox
We integrated the powerbox paradigm into our system as

follows. When a user connects to the Internet, his power-
box registers with his storage provider using the princi-

pal.powerbox_register RPC. When a service requires the
use of the powerbox, for instance, when the user clicks on
an open or save-as icon, the service invokes the princi-

pal.powerbox_invoke RPC. The storage server forwards
this request using the principal.powerbox_invoke upcall
to the powerbox clients associated with the nearest ancestor
principal that has at least one registered powerbox. When
the powerbox receives this message, it displays an appro-
priate dialog box, which includes the requesting principal’s
pet name (which helps prevent a service from spoofing its
identity) and the service’s message.

Multiple powerbox clients may be registered simultane-
ously. This is useful when a user has multiple devices that
may be simultaneously connected to the Internet. In this
case, all devices show the dialog box. When one powerbox
responds, the storage provider issues the principal.power-

box_close upcall to all of the other powerbox instances in-
dicating that they should close their corresponding dialog.
Multiple requests can be extant at any given time. The
handle parameter allows the parties to differentiate the in-
vocations.

In the case where there is no powerbox registered, the
storage server replies to the service with an error message
to prevent it from waiting forever. It may be that the user
forgot to start the powerbox client. In this case, the service
can display a message to the user indicating that to proceed,
the powerbox application must be started.

The powerbox methods are summarized in Table 3.

5.4 Updating Shared State
Given that ad hoc sharing is the norm in S4, a mechanism

is needed for ensuring that updates are applied atomically.
S4 clients can reuse S3’s mechanism for updating shared



Client:
principal.powerbox_register ()
principal.powerbox_reply (handle, name)

Service:
principal.powerbox_invoke (msg, options) → handle

Service and Storage Provider:
principal.powerbox_close (handle)

Table 3: Powerbox Methods

state: when storing a file in S3, the store can be made con-
ditional on the current content’s MD5 hash. A service can
ensure atomic updates by reading the current version, ap-
plying updates, and then performing a conditional store. If
the conditional store fails, the service can retry. This ap-
proach guarantees atomic updates for a single file. It can,
however, result in starvation.

6. DISCUSSION
Scenarios: To determine whether our design meets our re-
quirements, we return to our example scenarios. We assume
that Alice and Bob’s services have been updated to use S4
and that Alice and Bob have migrated their data to personal
storage providers.

When Alice or Bob wants to give a service access to their
respective storage repository, they log in to their security
manager and create a new principal for that service. The
security monitor returns a password capability (an unguess-
able string), which Alice or Bob copy and paste into a di-
alog the service displays. This string contains all of the
information the service needs to log in and access the user’s
storage and to use the powerbox. Initially, a principal has
no authority to access the user’s storage. Authority can be
bootstrapped using the powerbox. For instance, Hotmail
may use the powerbox to ask for access to the user’s ad-
dress book, and Flickr may ask for access to files matching
the pattern *.jpg. In the latter case, the user may add the
additional limitation that Flickr is authorized to access files
under a certain sub-directory.

One of Alice’s desires was to be able to update her profile
picture in one place and have all services that use a profile
picture automatically start using that picture. To support
this, such services can be changed to use a user-specified
file, which has a reasonable default. Alice then needs to
authorize the relevant services to access this object. This
needs to be done just once for each service. Again, this can
be done by way of the powerbox. Alternatively, Alice could
interact with the security monitor. Either way, when Alice
changes the file, services will start using the file when they
notice that the file has changed.

Alice also wants a single global address book. Again, we
can imagine that all services either use a single file or a
directory with a single file for each entry. A standard default
location should again be established. Access can again be
authorized using the powerbox. From then on, each service
monitors the address book for changes, and automatically
saves changes there.

We now turn to Bob, who wants to be able to access his
photos on Flickr from Google Docs. Bob can now upload his
files directly to his personal storage repository and enable
Flickr to access them immediately and Google Docs on a
need-to-use basis by way of the powerbox. Note that this

requires no more interactions with the program than opening
a file in a program that has access to all of the user’s files.
Our use of regular expressions on the file name does not
enable Bob to perform access control based on tags and thus
he is unable to only grant Flickr access to those files tagged
as being public without renaming them. He does not have
to move the files to a different directory, however: he can
just add a differentiating token to the file name.

Another of Bob’s concerns is version drift. Since both
Google Docs and Flickr refer to his store for authoritative
copies of data, all updates are made to the authoritative
copy. Version drift cannot occur.

Finally, Bob wants to be able to send documents he worked
on in Google Docs from Hotmail without first having to
download the documents. Since Hotmail and Google Docs
both use his store for accessing his data, this is not a prob-
lem. Moreover, it can again be done in a manner consistent
with POLP and without any explicit interactions with the
security monitor.

Now, consider the case where Alice decides to stop us-
ing a social networking service. Alice can prevent that ser-
vice from further accessing her data by entering the security
monitor and deleting the principal. There is no way to stop
the service from using copies of data that it cached, but it
cannot access subsequent updates.

Business Incentives: It is questionable whether estab-
lished players, such as Facebook, would want to support a
system such as S4: they would relinquish control of data.
Nevertheless, we think that users are interested in solving
the problems that we have identified and might migrate
to a service that gives them more control over their data.
Further, the possibility to better control data might extend
the market to privacy-sensitive individuals. Alternatively, a
company such as Facebook might be interested in becoming
a storage provider in the S4 model, as this would allow them
to potentially increase their importance as a focal point of
user activity and thereby reap the benefits of being a hub.

7. FUTURE WORK
We identify four areas of future work: richer filters, pro-

tection from undesired changes, a push mechanism for prop-
agating changes, and protection against financial attacks.

S4 applies filters to the file name, however, many files,
such as photos, contain tags. Filtering based on tags is pro-
vided by many services, so it is well understood. It would al-
low Bob to more easily articulate his policy that only photos
tagged public should be made available to Flickr. As tags
are harder than file names to see, care must be taken partic-
ularly with tags that the user did not set; a tag’s provenance
should be considered.

Protection from changes from malicious or misbehaving
services can be achieved using copy-on-write. Using such a
mechanism, a user would enable copy-on-write for untrusted
principals in his security monitor and the storage provider
would not immediately propagate changes to the authori-
tative copy. Instead, after examining the changes, the user
would manually promote changes. This has the disadvan-
tage that the feature must be enabled before the damage
occurs and requires constant user maintenance. Instead,
periodic snapshots can be made, which only require user
intervention when something goes wrong. This has the dis-
advantage that changes may need to be disentangled. This



mechanism also provides automatic backups.
Scanning files for changes can be bandwidth intensive and

can add latency. A push mechanism solves both of these
problems. This could be implemented as a simple per-service
log, which the storage provider periodically pushes. The
aggressiveness of the pushes could be made a function of the
service’s and the storage provider’s latency requirements.

Finally, since bandwidth is not free, a mechanism needs to
be provided to prevent financial attacks. This is particularly
important because unlike programs that use a lot of CPU
or network locally, there is no immediate feedback that a
service is generating a lot of traffic. A solution is to enforce
monetary allowances. If a service exceeded its allowance,
access could be denied or rate limited, and the user could
be informed using the powerbox or via email.

8. CONCLUSION
We have defined requirements for protection, usability and

sharing in subsection 3.4 and built a system that meets
these requirements. We focused on fine-grained delegation
and usability in the sense that users should be able to con-
cisely and directly express their desired security policies and
these should require minimal maintenance. Our framework
is based on hierarchical, filtered views. This enables users to
concisely express cross-cutting concerns, such as delegating
access to all JPEG files. This not only delegates access to all
JPEG files independent of their location but also new JPEG
files as they are added. To reduce the number of user inter-
actions with the security monitor, we integrated a powerbox
into our design, a mechanism that allows users to select a
file in an open or save-as dialog box using their authority
and not the more limited authority of the application.

9. REFERENCES
[1] Amazon web services simple storage service.

http://aws.amazon.com/s3/, 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A Berkeley view of cloud
computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb. 2009.

[3] T. Close. Web-key: Mashing with permission. In Proceedings of
Web 2.0 Security and Privacy, Beijing, China, Apr. 2008.

[4] R. Geambasu, S. D. Gribble, and H. M. Levy. CloudViews:
Communal data sharing in public clouds. In Hot Cloud ’09,
June 2009.

[5] P. P. Griffiths and B. W. Wade. An authorization mechanism
for a relational database system. ACM Transactions on
Database Systems, 1(3):242–255, 1976.

[6] F. Hsu and H. Chen. Secure file system services for Web 2.0
applications. In CCSW ’09, pages 11–18, 2009.

[7] M. Kaminsky, G. Savvides, D. Mazières, and M. F. Kaashoek.
Decentralized user authentication in a global file system. In
Proceedings of SOSP ’03, pages 60–73, October 2003.

[8] B. W. Lampson. Protection. SIGOPS Operating Systems
Review, 8(1):18–24, 1974.

[9] S. Miltchev, J. M. Smith, V. Prevelakis, A. Keromytis, and
S. Ioannidis. Decentralized access control in distributed file
systems. ACM Computing Surveys, 40(3):1–30, 2008.

[10] Nirvanix Storage Delivery Network. http://www.nirvanix.com/,
2010.

[11] D. D. Redell. Naming and Protection in Extendable Operating
Systems. PhD thesis, MIT, Cambridge, MA, USA, 1974.

[12] J. T. Regan and C. D. Jensen. Capability file names:
separating authorisation from user management in an internet
file system. In Proceedings of USENIX Security
Symposium ’01, pages 17–17, 2001.

[13] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. In Proceedings of the IEEE,
volume 63, pages 1278–1308, Sept. 1975.

[14] M. Satyanarayanan. Integrating security in a large distributed
system. ACM Transactions on Computing Systems,
7(3):247–280, 1989.

[15] M. Stiegler, A. H. Karp, K.-P. Yee, T. Close, and M. S. Miller.
Polaris: virus-safe computing for windows xp. Commun. ACM,
49(9):83–88, 2006.

[16] M. Stiegler and M. Miller. A capability based client: The
DarpaBrowser. Technical Report BAA-00-06-SNK, Combex,
Inc., 2002.

[17] Z. Wilcox-O’Hearn. Names: Decentralized, secure,
human-meaningful: Choose two.
http://zooko.com/distnames.html, Sept. 2003.

[18] Z. Wilcox-O’Hearn and B. Warner. Tahoe: the least-authority
filesystem. In Proceedings of StorageSS ’08, pages 21–26, 2008.

http://aws.amazon.com/s3/
http://www.nirvanix.com/
http://zooko.com/distnames.html

	Introduction
	Scenarios
	Toward Per User Repositories
	Data Management Issues
	Security Issues
	Per-User Repositories
	Requirements

	Related Work
	S4
	Principals
	Hierarchical, Filtered Views
	Powerbox
	Updating Shared State

	Discussion
	Future Work
	Conclusion
	References

