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Abstract

Smart phones should not just accompany their owners:
they should provide them with the data they want when-
ever and wherever they are. This does not mean that
the user should always be able to fetch data on demand:
wireless communication requires a significant amount of
energy; cellular bandwidth is often limited; and, cover-
age is not ubiquitous. Instead, scheduling data stream up-
dates, e.g., podcast downloads and photo uploads, should
incorporate predictions of where the user will be, when
and where data will be needed, and when transfer condi-
tions are good (e.g., WiFi is available). The challenges
we have encountered while designing such a framework
include scheduling transmissions while respecting multi-
ple optimization goals, application integration, modeling
user and data stream behavior, and managing prefetched
data. To better understand user behavior and evaluate our
framework, we are gathering traces of smart phone use.
Initial results show potential energy savings of over 70%.

1 Introduction

Mobile devices promise to keep users connected. Yet,
limited energy [12, 2, 10, 11, 1], data-transfer al-
lowances [3, 13], and cellular coverage [11] reveal this
assurance to be more a hope than a guarantee. This situa-
tion can be improved by increasing battery capacity, pro-
viding more generous data-transfer allowances, and ex-
panding cellular coverage. We propose modifying soft-
ware to be more efficient with the available resources.
Many applications exhibit flexibility in when they must
transmit data. Such applications include those that read
from or write to data streams, e.g., podcast managers and
photo sharing services. These applications can prefetch
data and delay uploads until good conditions arise.

More efficiently managing the available energy, the
user’s data-transfer allowance and data availability can
improve the user experience. Increasing battery life

raises the user’s confidence that a charge will last the
whole day, even with intense use. Alternatively, a smaller
battery can be used. Explicitly managing the data-
transfer allowance enables users to choose less expen-
sive data plans without fearing that the allowance will be
exceeded, which may result in expensive overage fees
and bill shock, a common occurrence in the US [4].
Finally, accounting for availability by, e.g., prefetching
data, hides spotty and weak coverage and user-perceived
latency is reduced.

We have encountered two main challenges to ex-
ploiting scheduling flexibility in data streams: predict-
ing needed data and coordinating resource consump-
tion. First, applications need to predict when and what
to prefetch. Consider Alice, who listens to the latest
episode of the hourly news on her 5pm commute home.
A simple policy prefetches episodes as they are pub-
lished. As Alice only listens to the 4pm or 5pm episode,
downloading episodes as they are published wastes en-
ergy and her data-transfer allowance. An alternative pol-
icy prefetches when power and WiFi are available, typ-
ically overnight. But, Alice wants the latest episode on
her commute home, not the one from 6am. The schedul-
ing algorithm needs to learn when and how Alice (the in-
dividual, not an aggregate model) uses data streams. The
second challenge is coordinating the use of available re-
sources. In particular, the data-transfer allowance and lo-
cal storage must be partitioned between the applications
and the user. This management should not interfere with
the user by, e.g., exhausting the transfer allowance so that
the user cannot surf the web, or causing an out-of-space
error to occur when the user saves files. Further, the allo-
cations should adapt to the user’s changing preferences.

Research on scheduling transmissions on smart
phones has focused on reducing energy consump-
tion by predicting near-term conditions. Bartendr de-
lays transmissions until the signal strength is likely
strong [12]; TailEndr groups transmissions to amortizes
energy costs [2]; BreadCrumbs, among others, predicts
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WiFi availability to reduce energy spent needlessly scan-
ning [10, 11, 1]. Our work differs from these in that
we are concentrating on scheduling transmissions be-
fore a contextual deadline, as predicted from observed
user behavior. We also consider the cellular data-
transmission allowance, which is an increasingly com-
mon constraint [3, 13]. Further, because we enable ag-
gressive prefetching, we consider how to manage stor-
age. Given multimedia data access patterns in which
subscribed to data is used at most once [8, 7], common
replacement techniques, such as LRU, perform poorly.

In this paper, we make the case for better scheduling of
background data-stream updates to save energy, to make
better use of data-transfer allowances, to improve discon-
nected operation, and to hide data-access latencies, all of
which advance our ultimate goal of improving the user
experience. Initial results show potential energy savings
of over 70%. We present Woodchuck, a framework to ac-
complish this. Applications provide simple descriptions
of transmission tasks to a transmission broker. The bro-
ker uses these and predictions of when, where and how
data will be used as well as when streams will be up-
dated to schedule the requests so as to minimize battery
use, to respect any data-transmission allowance, and to
maximize the likelihood that data that the user accesses
is available. We also consider how to manage storage
for holding prefetched data. Finally, we describe a user
study we are conducting to evaluate Woodchuck.

2 Potential Savings

We propose to improve the user experience on smart
phones by exploiting particular user behaviors, namely,
data stream usage, such as podcasts. Recent user studies
suggest that this usage is common among the heaviest
data users [6, 9, 14, 8]. And, Ericsson is convinced this
behavior will become mainstream [5]. Based on a simple
model of power consumption, we show that playing au-
dio podcasts that have been opportunistically prefetched
results in 70% less energy use than streaming them over
3G. Moreover, this decreases the use of the cellular data
transfer allowance and improves data availability.

Recent user studies show that the heaviest data users
spend a lot of time interacting with their smart phones
and a large portion of their traffic is not interactive. These
findings suggest that Woodchuck has many opportunities
to improve the user experience among top users. Hos-
sein et al.’s study of smart phone usage [6] shows users
spend between 30 minutes and 8 hours per day interact-
ing with their device, the amount of network traffic is be-
tween 1 MB and 1 GB per day, and the percentage of not
interactive traffic ranges from 20% to 90%. Trestian et
al. [14] suggest that these numbers could be conservative
as mobile users avoid bandwidth- and battery-intensive

applications when on the go. In their study of mobile
device traffic on 20,000 DSL lines, Maier et al. [9] re-
port that web browsing accounted for 15% of the traffic
volume generated by mobile devices, which is less than
that generated by PCs. The most visited web sites were
video-on-demand and streaming sites, and 40% of the
volume was multimedia content. They also found that
2-5% of the volume consisted of small XML files, which
provides strong evidence that subscription-based content
is widely used. Gunawardena et al. studied podcasts on
the Zune Social service [8, Fig. 19] and found that sub-
scription content is used regularly: 16% of users listened
to three or more podcasts per day. At an average 15 MB
per podcast and assuming a 96 Kbit/s encoding, this cor-
responds to an hour of audio per day.

There is evidence that the always-connected behavior
shown by top users will become mainstream, broaden-
ing Woodchuck’s potential impact. Hossein et al. [6] ob-
serve that user behavior is dispersed relatively uniformly
between the observed extremes. We interpret this as the
adoption of a new technology: as software and services’
ease of use improves, more users are willing to invest the
time required to use them. This is consistent with Erics-
son’s observations that consumers’ expectations and be-
haviors are changing with respect to video [5]: so-called
digital natives and, increasingly, the general population
are no longer satisfied with broadcast TV’s fixed sched-
ule; they want the flexibility of streaming and on-demand
services, the ability to watch what they want, when they
want, where they want. Maier et al.’s 11 month study [9]
supports this: they observed a doubling in the number
of mobile devices and a six-fold increase in the traffic
volume generated by them.

Gunawardena et al.’s data [8, Fig. 29] reveal that users
do not just want flexibility, they want fresh content:
approximately 10% of podcasts listened to on portable
Zune devices were listened to within a day of their pub-
lication, implying simple prefetching policies, such as
fetching when there is power and WiFi, are insufficient.
We find this a surprisingly large amount considering that
the portable devices could only be synchronized by at-
taching them to a computer.

To estimate the potential energy savings of prefetch-
ing, we measured the energy to stream audio, to play lo-
cal files, to download over WiFi, and at idle, see Table 1.
Listening to an hour’s worth of audio requires 3.6 KWs
when streamed over 3G but 1 KWs, just 28% as much,
when the data is available locally. The predicted sav-
ings are conservative as our test device was stationary
and had a strong signal: Schulman et al. [12] observe
that six times as much energy is required when the signal
is weak.

Not all episodes can be successfully prefetched when
there is free WiFi and power: the hourly news is pub-
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Access Activity Watts Ratio
3G Play 56.Kb/s stream 1.00 12.5
Edge Play 56.Kb/s stream 0.96 12.0
WiFi Play 56.Kb/s stream 0.75 9.3
Local Storage Play 56.Kb/s files 0.28 3.5
Local Storage Play 128.Kb/s files 0.27 3.4
Local Storage Play 320.Kb/s files 0.32 4.0
WiFi Download at 4.7 Mb/s 1.23 15.4
WiFi Download at 1.0 Mb/s 0.91 11.4
WiFi Download at 256 Kb/s 0.76 9.5
None Idle 0.08 1
None Idle, LCD on 0.27 3.4

Table 1: Energy used on a Nokia N900 to play MP3s, to
download via WiFi, and at idle. A full charge has about
18 KWs = 5 Wh.

lished hourly, but WiFi and power are often only avail-
able at night. Significant energy savings are possible in
this case by opportunistically fetching data when there
is good WiFi, e.g., before the user leaves work. Con-
sider the case where 8 hours of audio, about 200 MB of
data, are prefetched over WiFi. At 4.7 MB/s, this re-
quires 420 Ws (2.5% of the capacity). If the user listens
to 30 minutes of audio (25 MB) on the commute home,
only an additional 480 Ws (2.7% of the capacity) are re-
quired. Streaming 30 minutes of audio over 3G requires
1800 Ws, twice the amount of energy to prefetch 8 times
the data and listen to the same audio. If these energy
savings are realized, users may use more fresh content,
increasing Woodchuck’s impact: currently, users avoid
draining the battery by, e.g., not listening to music [14].

In terms of managing the data transfer allowance, if
the current top 16% of users who listen to 3 or more pod-
casts per day streamed them, they would transfer 1.5 GB
per month. This is three times the new monthly limit
on T-Mobile UK’s network [13]. Verizon users with
a 200 MB allowance would exhaust their plan in just
4 days and those with the 2 GB plan would have little
for anything else [3]. If prefetching resulted in a 90% hit
rate, just 150 MB would need to be streamed.

Finally, prefetching can improve data availability.
Rahmati and Zhong report that although users in their
study were connected to a cell tower 99% of the time,
they were only able to transfer data 80% of the time [11].

3 Woodchuck Architecture

Woodchuck consists of three main components. First,
Woodchuck implements a transmission broker whose
main job is to schedule applications’ transmission re-
quests and gather information about them. Unlike indi-
vidual agents in a decentralized scheme, a broker has a
global view of the system and runs continuously, which
enables agile adaptations. Second, to predict what data is
likely to be used, Woodchuck collects contextual infor-

enum type { META_DATA, CONTENT };

Application → Broker:
task (stream_id, request_id, recurrent_p,

timeout, size, type, callback)
cancel (stream_id, request_id)

Broker → Application:
transmit (stream_id, request_id, seq)

Application → Broker:
success (request_id, seq, actual_size,

struct { filename, discardable } data[])

failure (request_id, seq, error, retry_p)

Figure 1: Transmission Broker API

mation, such as location tracks, WiFi and power avail-
ability, and cellular signal strength. Finally, Woodchuck
manages storage. Woodchuck adjusts the size of applica-
tions’ prefetch areas according to the user’s preferences,
which it learns from the user’s behavior. The storage
manager can adapt even if the application is not running,
thereby avoiding annoying out-of-space errors.

3.1 Transmission Broker
The transmission broker consists of a transmission re-
quest API (see Figure 1), a data miner, and a scheduler.

To make integration of the transmission broker in ex-
isting applications as easy as possible, we examined
a few applications that automatically synchronize data
streams. We found that a common pattern is to set up a
timer to invoke a callback when the next synchronization
should occur, e.g., if using g_timeout_add for GTK.
When the timer fires, the program optionally checks a
few conditions, e.g., if WiFi is available, and then initi-
ates the transfer. This process is repeated (only) as long
as the program is running.

Using Woodchuck, instead of a timer-based callback,
an application registers each data stream (e.g., each pod-
cast subscription) using task. When the broker decides
that a transmission should occur, it, using, e.g., D-Bus,
starts the application if it is not already running and in-
vokes the transmit upcall. As the broker is always run-
ning, streams can be synchronized at any time. When
the transmission completes, the application calls either
success or failure as appropriate. Recurrent requests are
automatically reinserted into the scheduling queue. If the
application reports an error, the transmission is retried.

The API encourages, but does not require, program-
mers to separate transmissions of meta-data from object
content (e.g., updating a mailbox’s index vs. download-
ing new e-mails). This better enables the broker to man-
age the data transmission allowance: if transmitting data
is expensive, the broker can decide to synchronize the
meta-data, but delay fetching the objects. Thus, the user
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is still informed about the arrival of new data, e.g., new
e-mails, and can choose to explicitly authorize the poten-
tial overage charge to download the content.

To separately manage meta-data and content, the ap-
plication registers the stream as a meta-data stream and,
for each new object, the application creates a new non-
recurrent request with an immediate timeout. This en-
ables the broker to decide whether to delay the download
or whether to bother downloading the data at all. This
does not preclude the application from downloading the
data, if the user explicitly requests it. In such cases, the
application calls success as usual to tell the broker that
the request was fulfilled. The broker uses this to adjust
its model of the user’s preferences.

When a transmission is successful, the application in-
cludes as a parameter to success the files it updated. The
broker monitors these files for accesses, which often im-
plies use, using, e.g., Linux’s inotify. The broker knows
which stream a file came from and when the data was
downloaded thanks to the stream_id and a request_id
parameters to task. Using this knowledge, it can learn
a stream’s object arrival pattern, which streams are used,
which objects are used, object access patterns (e.g., in or-
der, only new objects, random), how frequently objects
are used, and a stream’s delay tolerance.

3.2 Predicting the When, Where and How

In addition to learning how streams are updated and used,
Woodchuck predicts the context in which objects are
used, how the user moves between contexts, and what re-
sources (e.g., power, WiFi, and signal strength) are avail-
able in different locations. We plan to evaluate different
data mining and machine learning algorithms for these
tasks. With this information, Woodchuck predicts which
objects have the highest expected utility and prefetches
them when conditions are good.

A context is a set of circumstances, a combination of
temporal and spatial properties. A user’s morning rou-
tine, which includes exercise and listening to a podcast,
describes a context. She may do this even when travel-
ling, in which case location plays only a minor role. A
context may include movement, e.g., the morning com-
mute to work is a context. To identify contexts, we are
considering clustering algorithms over locations, loca-
tion tracks, time of day and day of week. As Trestian
et al. found that most users spend most of their time in
approximately three places [14], if quantized carefully,
the state space appears manageable.

To determine the objects used in a particular context,
whenever an object is used, Woodchuck records it and
the current context. Woodchuck will use this informa-
tion to compute the probability of a stream conditioned
on the context. Using this knowledge, Woodchuck will

Application → Broker:
cleanup (callback)
query (stream) 7→ total_bytes

Broker → Application:
free (struct { stream_id, request_id } requests[])

Figure 2: Storage Management API

predict what streams a user will most likely access given
a context and will prefetch accordingly. A complication
is that users’ behaviors change over time. This can be
accounted for by aging the data. If this makes computing
probabilities too expensive, Woodchuck can compute the
probabilities when there is power and cache the results.

We also plan to use a Bayesian analysis to predict suc-
ceeding contexts and the resources available in a context.
Again, Woodchuck records historical data to construct a
prior probability, which it will use to make predictions.

3.3 Managing Storage

When applications aggressively prefetch data, storage
becomes a shared resource and it must be partitioned
among the applications as well as the user. Woodchuck
allows applications to specify all of their data require-
ments ahead of time (using task). Woodchuck chooses
which data to prefetch based on maximizing data util-
ity under space availability, connectivity and cost con-
straints. Because applications can specify any data and
Woodchuck chooses, they can be arbitrarily aggressive.

Woodchuck keeps the maximum utility objects based
on observed access patterns, as recorded by the trans-
mission broker; it implicitly computes the cache size for
each stream. Woodchuck models streams that have not
been used for a long time with a smaller utility than
streams that have been used more recently. Woodchuck
also recognizes and reacts to other access patterns. Re-
turning to the example of the hourly news cast, only the
recent episode has any value. Woodchuck accordingly
assigns only the most recent episodes any utility. Wood-
chuck also detects streams that exhibit a use-once prop-
erty, e.g., multimedia [7]. In these cases, Woodchuck
assigns used files no utility.

Woodchuck provides two mechanisms for reclaiming
space: discardable files and an application upcall. When
an application registers downloaded data (using success),
it indicates whether Woodchuck can discard the corre-
sponding files (see Figure 1). We expect this to be com-
mon as many applications can already deal gracefully
with files that disappear, which happens, for example,
when users use the file manager to reclaim space rather
than the application. As the application keeps the meta-
data separately, e.g., the list of podcast episodes, it can
redownload the data should the user subsequently need
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it. Some data does not lend itself to being stored as
files. For instance, the application might keep all data
in a single database. In this case, Woodchuck relies on
the applications to disentangle the data and free space. If
an application has registered a callback using cleanup,
Woodchuck invokes the free upcall with each object the
application should delete (Figure 2). Woodchuck starts
the application if it is not running. If the application frees
an insufficient amount of space, Woodchuck must accept
this; Woodchuck must not delete precious user data. In
this case, the user must intervene. To help understand
the situation, Woodchuck provides a tool to visualize ap-
plications’ storage use. To avoid multiple managers con-
flicting, the storage manager and API can be extended to
also manage other applications’ storage caches, e.g., the
browser’s cache or the file manager’s file previews.

4 Evaluation

We made four claims: Woodchuck can save energy, man-
age a data allowance, predict what files a user is likely to
need, and effectively manage storage. To evaluate these
claims, we have obtained institutional review board ap-
proval to collect traces of user behavior. We have writ-
ten monitoring software for Nokia’s N900 that logs file
accesses, when programs start and exit, when the user
interacts with the device, the battery status (available en-
ergy and when it is charged), network connection statis-
tics (AP or provider’s network name, signal strength and
bytes transferred), and available networks (visible cell
towers and WiFi APs and their signal strength).

We can replay the traces to measure how Woodchuck
might perform. We say might as different prefetching
decisions can result in different user behavior. Consider
a user on an airplane: the data that the user can access
is just that which is on the device; different prefetching
schemes could have resulted in different cache contents.

We also want to measure Woodchuck relative to other
policies. In particular, we are interested in simple poli-
cies such as always fetch on-demand and only prefetch
when there is WiFi and power. These measurements will
allow us to evaluate whether the complexity of the ap-
proach is justified. We are also interested in understand
what the limits of this approach are, which can be mea-
sured using an oracle policy.

Having found policies with reasonable trade-offs be-
tween complexity and effectiveness, we will conduct an-
other user study in which users actually test Woodchuck.

5 Conclusions

The smart phone user experience must be improved: bat-
tery life is too short, data allowances are unnecessarily

constricting, and connectivity is not universal. A promis-
ing approach is to improve software by enabling aggres-
sive prefetching. We found that listening to prefetched
audio needs less than 30% of the energy required to
stream it over 3G while stationary and with a strong
signal, i.e., in ideal conditions. Because users want
fresh content, it is not sufficient to prefetch when there
is WiFi and power. Based on this, we propose Wood-
chuck, a framework which learns how users use data and
in which contexts, predicts what data a user will need,
and prefetches it when conditions are good. To evaluate
Woodchuck, we are gathering user traces.
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