
30 Years of Memory Mismanagement is Enough!
Improving the Memory Residency Problem

Neal H. Walfield Jonathan S. Shapiro
Johns Hopkins University
{neal,shap}@cs.jhu.edu

Abstract
Many programs could improve their performance by
adapting their memory use. To ensure that an adaptation
increases utility, a program needs to know not only how
much memory is available but how much it should use at
any given time. This is difficult on commodity operating
systems, which provide little information to inform these
decisions. As evidence of the importance of adaptations
to program performance, many programs currently adapt
using ad hoc heuristics to control their behavior.

Supporting adaptive applications has become press-
ing: the range of hardware that applications are expected
to run on—from smart phones and netbooks to high-end
desktops and servers—is increasing as is the dynamic na-
ture of workloads stemming from server consolidation.
The practical result is that the ad hoc heuristics are less
effective as assumptions about the environment are less
reliable, and as such memory is more frequently under-
or over- utilized. Failing to adapt limits the degree of
possible consolidation. We contend that in order for pro-
grams to make the best of available resources, research
needs to be conducted into how the operating system can
better support aggressive adaptations.

1 Introduction

Programs can often adapt behavior in response to avail-
able memory. For instance, the time that a garbage col-
lector spends in the collector can be reduced by using
a larger heap [1], and computed results can be cached
and reused reducing latency and increasing throughput
[8]. Adaptations are not required for the correct execu-
tion of a program; they improve the program’s utility—
assuming, that is, that the extra memory could not have
been better employed elsewhere.

There are two challenges in intelligent adaptation.
First, a programmer must determine whether the re-
sources required for the adaptation are available. Us-

ing too much memory will result in paging, which of-
ten negates any benefits an adaptation may have brought.
Second, to maximize the system’s utility, a program
needs to coordinate its resource use with that of other
adaptive programs in the system. Commodity operating
systems do not enable either of these requirements.

The lack of support for adaptive applications stems
from the use of transparent multiplexing. Transparently
multiplexing resources simplifies programming by re-
moving the need for programmers to consider how to
schedule available resources by way of complex overlay
strategies, and thus allows them to concentrate on solv-
ing the functional aspect of their problem [3]. The result,
however, is that programs have no reliable mechanism to
determine what resources are available to them. Without
this knowledge, any adaptation becomes a gamble. This
gamble is a costly one given that a bad adaptation results
in unnecessary paging or even thrashing [14]. Further,
because transparent multiplexing uses program behavior
to estimate demand, programs that manage their own re-
sources cause the scheduler to reach the wrong assump-
tions, and may even create a positive feedback loop as
the program tries to determine the appropriate allocation
and the system readjusts to perceived demand.

In this paper, we sketch possibilities for how to al-
low programmers to provide high quality results by ex-
ploiting available resources while remaining neighborly.
The underlying idea is to introduce mechanisms that al-
low unpremeditated coordination of resources among the
running programs such that the system constantly con-
verges towards a configuration with maximize expected
utility.

2 Today: Ad Hoc Adaptations

Many garbage collectors can reduce the time they spend
collecting by using a larger heap. This is because the
time it takes to perform a collection is proportional to
the size of the live objects, not the heap size [1]. Allow-

1

Decompress
Source Image Decompress and Scale

Dimensions Size Time Size Time Size
1600× 1200 429K 0.13s 5.5M 0.40s 2.5M
3008× 2000 2.4M 0.43s 17.2M 0.95s 2.2M

Table 1: The time to decompress and the time to decom-
press and scale images to fit in a 764 × 706 area. Per-
formed on an Intel Core2 Quad core running at 2.4GHz
using ImageMagick v6.3.5.10’s convert. Output was
in RGB raw format and sent to /dev/null. Scaling
was done using the -geometry option.

ing the heap to grow too large is problematic as paging
or thrashing can result [14]. This often offsets any sav-
ings. Ideally, the garbage collector should perform a col-
lection just before paging is initiated. As the operating
system provides no feedback, this is difficult to time. In
practice, garbage collectors are space conservative and
use small heaps. The Boehm collector, for instance, per-
forms a collection when approximately 50% of the size
of the heap after the last collection has been allocated.
This amortizes garbage collection overhead but does not
exploit extra memory.

Another useful adaptation is caching. Table 1 shows
the time it takes to decompress and to decompress and
scale a 2 megapixel and a 6 megapixel image on a mod-
ern desktop. According to Nielsen [10], 0.1 seconds is
the limit after which a user no longer feels that the sys-
tem reacts instantly. In all cases, the time to compute the
data to display is longer. To improve the user experience,
if there is a chance that an image may be viewed again
and there are idle resources, caching the data would seem
like a good strategy. Again, the difficulty is in sizing the
cache: a too large cache may result in unacceptable pag-
ing. Ideally, the cache should grow to fill the available
memory and the application should be able to shrink it
when there is pressure.

Caching is also effective in server programs. For in-
stance, the Deens DNS server, was converted to cache
queries and the result was a near doubling of the pro-
gram’s throughput [8]. Many server programs also main-
tain a pool of worker threads to more quickly dispatch
requests. This should be sized in the same way. The slab
allocator maintains a cache of initialized but unused ob-
jects, which it could allow to grow to the amount of avail-
able memory and shrink in reaction to memory pressure.

Reliably determining how much memory is available
and freeing memory when there is pressure is difficult.
Given the benefits of using extra memory, many pro-
grams employ ad hoc techniques to determine how and
how much to memory to use. A common policy used to
size a cache is for the programmer to select a cache size a
priori. A more dynamic policy sizes the cache according

to use by freeing entries that have have not been accessed
for some amount of time [12, 11]. Both of these policies
are fragile because neither considers the most important
factor: the amount of available memory.

Today, the range of execution hardware configurations
is wider and less well calibrated. In 2008, smart phones
and netbooks designed to run general applications be-
came popular, and Citrix announced a virtualization en-
vironment to run Windows applications on the iPhone
[6]. Industry wants to save money by reusing existing
components [9], and generate revenue by having existing
components reach more users. Meanwhile, users want
to run the same applications everywhere [6]. To ensure
good performance on these resource-poor machines, pro-
grams need to update their assumptions. They cannot,
for instance, use non-adaptive caches [7]. For these pro-
grams to remain competitive, they need to also take ad-
vantage of the available resources on larger machines.

We also suspect that ad hoc sizing techniques will be-
come an increasing problem for servers. Server consol-
idation continues to grow in popularity and save money
on both hardware and power. The effect is that server
programs are running in more dynamic environments.
For such configurations, static adaptive policies—if they
work at all [14]—are unlikely to provide as good degrees
of consolidation as policies informed by the current sys-
tem status. Although ballooning helps make virtualized
operating systems more adaptive [13], it does not go far
enough in that the adaptations that we are interested in
require that the applications collaborate. For these types
of adaptations, new mechanisms are required.

The lack of support for the type of adaptations we
have discussed is fundamentally different from the type
of adaptations that the exokernel design tries to enable.
In exokernel, the main design goal is to avoid abstrac-
tions as much as feasible by providing user-programs
with as low-level access to resources as possible [5]. Pro-
grams running on an exokernel can determine not only
what physical resources are assigned to them but can ex-
ploit these resources’ low-level capabilities. This solu-
tion does not address the overarching issue of how to al-
locate the system’s resources. This suggests that the pol-
icy decentralization advocates are wrong: effective sys-
temic performance requires coordinated systemic policy.

Ad hoc adaptation techniques were survivable when
programs ran on a narrow and well-calibrated range of
hardware. This is no longer the case. For applications to
effectively exploit their environment, they need to adapt
and this requires operating system support.

3 Supporting Adaptive Applications

Two issues hinder effective adaptations. First, the work-
ing set model of program behavior interprets utility as a

2

Kernel
f(demand) = availability

f(availability) = demand
Adaptive Application

availabilitydemand

Figure 1: Adaptive applications create a positive-
feedback loop when managed according to working set
principles. Although the system may stabilize, no mech-
anism ensures that it converges to a configuration with
maximum utility.

function of recency of use. This does not match how
adaptive programs use memory. As such, new mem-
ory allocation schemes should be investigated. Second,
in addition to providing the information programs need
to adapt intelligently and facilitating collaboration, op-
erating systems can increase the precision and agility
of adaptations by actively participating in the adaptation
process by performing adaptations on applications’ be-
halves. In this way, adaptations are only used if neces-
sary and only as much as necessary. The challenge is to
maintain robustness in the face of potentially increased
complexity and misbehaving programs.

3.1 Memory Allocation
Enabling effective adaptation on general-purpose operat-
ing systems is not just a question of supporting programs
in determining how much memory is available: general-
purpose operating systems allocate resources based on
observed demand, however, demand is exactly what
adaptive applications vary according to availability. This
is illustrated in figure 1. This can result in a positive-
feedback loop, and, ultimately, ineffective scheduling.
An application perceives a certain amount of available
resources and adapts by changing its demand. The op-
erating system then sees a change in demand and rebal-
ances the current allocation. The application again de-
tects a change in availability and again adapts its use, etc.
Although this may eventually stabilize, there is no reason
for the resulting allocation to reflect a configuration with
high utility.

The purpose of adapting is to increase a program’s
utility (that is, its worth to its stakeholders). We argue
that a scheme should be explored in which the system
distributes memory according to stakeholder-specified
expected utility.

The allocation and availability information should also
be temporally quantized. For instance, if a program sees
that there are several gigabytes of memory available to

it, and commits to a computation that uses that memory
for several seconds but then has the memory revoked just
milliseconds later, the adaptation is ineffective and may
result in negative utility.

3.2 Precise and Agile Adaptations

Many useful adaptations such as determining how to size
a cache and how to size a heap can by realized just by
knowing how much memory should be used in the near
future. Assuming that this information is made available
or somehow negotiated, the process needs to monitor the
availability and alter its behavior accordingly.

There are three shortcomings with this approach.
First, if a process does not adapt quickly, it may be
viewed as uncooperative and preemptively paged. As
paging is often more expensive than simply using a
smaller cache, avoiding the risk of being forcefully paged
is an incentive to not fully exploit all the available re-
sources. Second, when demand changes because some
process begins to use more memory, some processes will
observe that less memory is available and adapt. This
may create a herding effect in which more processes
adapt than is necessary. Finally, if a process adapts to
every small change in system state, it may spend more
time adapting than doing useful work.

These issues can be avoided by having the resource
manager perform the adaptations on behalf of the pro-
grams. Because the resource manager would in this case
be the actor, adaptations can be executed at the very last
instant and only to the degree necessary to relieve pres-
sure. The challenge with this approach is that the mech-
anisms need to be designed carefully so that they do not
overly complicate the memory manager or require it to
depend on untrusted processes, both of which would de-
crease its robustness [4].

4 Memory Management in Viengoos

We have begun to explore how to improve memory man-
agement in the context of an experimental operating sys-
tem called Viengoos. Viengoos is a clean slate design
with the goal of providing a platform for experimenting
with novel resource management schemes and interfaces.

Work is currently being conducted on two fronts. First,
we are examining how to coordinate access to physical
memory so as to maximize expected utility. Second, we
are considering how to increase the precision and agility
of adaptations by studying common types of adaptations
and identifying simple and salient information that a pro-
gram can communicate to a central resource manager,
which can then safely perform the adaptations on the pro-
gram’s behalf.

3

GC Time Time
GCs Sec. Percent Sec. Relative

Adaptive 108 30.8 10.9% 282.4 1
Default 9183 232.8 52.5% 443.2 1.56

Table 2: Number of garbage collections, time spent col-
lecting, and time required to complete the benchmark us-
ing the adaptive scheduler and the default scheduler.

4.1 Memory Allocation

Based on the observation that the parent is usually the
primary stakeholder, Viengoos distributes resources ac-
cording to a hierarchical model. A parent process assigns
a priority and a weight to each of its children. These val-
ues are used by the resource manager to determine each
process’s access to its parent’s memory allocation in a
highest-priority first, proportional share manner. These
parameters were selected because they are simple and ap-
pear to succinctly capture stakeholder preferences, which
is exactly what a utility function does.

When determining how to distribute memory, Vien-
goos maximally assigns a process as much as it currently
demands. In this way, the scheduler is work conserving.
This allows lower-priority applications to make use of
otherwise idle resources.

Using the same parameters, we have also developed
an algorithm to compute the amount of memory that is
approximately available to a process. This allows a pro-
cess to straightforwardly determine how much memory
it could use in the near future. Both a process’s current
allocation and availability are recomputed and published
on a regular basis.

To demonstrate the effectiveness of this approach we
modified the Boehm garbage collector to size its heap
according to the amount of reported available mem-
ory. Normally, the Boehm collector tracks the num-
ber of bytes allocated since the last collection and when
this exceeds approximately 50% of the heap size after
the last collection, it performs a collection. This lim-
its the amount of garbage to a constant factory larger
than the live objects at the last collection. This strategy
does not take advantage of additional memory to delay
collections. Because collection time is proportional to
the number of live objects and not heap size [1], this
can be significant [14]. Our benchmark allocates some
data structures, links them, overwrites the root pointer
(thereby making the data structures garbage), and then
loops. It was run on an AMD Duron running at 1.2 GHz
with 64 KB L2 and 512 MB of RAM. The results of run-
ning the benchmark with the adaptive scheduler and the
default scheduler are summarized in table 2. The adap-
tive scheduler reduced the total number of garbage col-
lections by almost two orders of magnitude and the total

0 500 1,000 1,500
0

100

200

300

Time (seconds)

M
em

or
y

(M
B

)

Avail. 20
Alloc. 20
Avail. 40
Alloc. 40
Avail. 5
Alloc. 5

Figure 2: Three instances of a garbage-collected program
with a common parent and different assigned weights
adapting their heap according to the amount of reported
available memory. The program instances’ starts are
staggered. The graph shows the time since the start of
the benchmark vs. the memory available to an instance
and the amount of memory that an instance uses.

execution time by more than a third.
The real test is how well this works in the face of mul-

tiple adaptive applications. To test this, we ran three
instances of the above benchmark with a common par-
ent. Each was assigned the same priority but a different
weight. The starts were staggered to show the adaptation.
Figure 2 shows a plot of time vs. the amount of memory
available or allocated to each instance. When the bench-
mark starts, the first instance immediately uses all the
memory. When the second instance starts, it allocates its
share and the first instance adapts. When the third in-
stance starts, the first two instances yield enough mem-
ory such that the last instance is allocated its share. As
each instance completes, the remaining instances adapt
to use the newly available memory.

4.2 Increasing Agility and Precision

A well-studied example of how to provide simple and
safe management information to the kernel is page rank-
ings [2]. This information is simple to express and cap-
tures a useful memory management policy. Further, it
can be used in such a way that either the information only
hurts the application itself or it represents a non-negative
improvement in system performance.

We have identified another example of this type of in-
formation: discardable memory. We observe that it is
often cheaper to discard memory and recompute when it
is next required than to save it to disk when its physi-
cal memory is preempted. To support discardable mem-
ory, the resource manager needs to provide an interface
to allow programs to indicate that memory is discardable.

4

0 50 100 150

0

100

200

300

Elapsed Time (seconds)

M
em

or
y

(M
B

)

Main Avail.
Main Alloced.

Hog Avail.
Hog Alloced.

Figure 3: Time vs. memory (available or allocated) for
a caching program whose cache is discardable (and thus
managed by the resource manager) and a memory hog.

The manager uses this information when it selects a page
for eviction. If the page has been marked as discardable,
it can reuse the frame without saving the contents. How-
ever, the resource manager must note that that page has
been discarded and signal the application if it tries to use
it again. In Viengoos, we signal this information at the
time of the next access. This ensures that any user of
the page receives the signal, and, when the signal is sent,
that the recipient is necessarily ready to receive it (the
accessing process just faulted).

To demonstrate the effectiveness of discardable mem-
ory in realizing adaptations, we wrote a program that
manages a cache of objects each one megabyte large and
which accesses the objects according to a Zipf distribu-
tion. If an object is not in the cache, the program gener-
ates it by querying a database (managed by SQLite) and
marks the object as being discardable. The program then
accesses the object. If it has been discarded, the program
is signaled. It calls the object creation mechanism and
resumes execution. This requires a dozen lines of code.

When the program exceeds the memory available to it,
the resource manager automatically finds the appropriate
pages using, e.g., a LRU policy and discards them. This
is the desired adaptation. For finer control, this could be
augmented using page rankings to ensure that pages in
the cache are selected before other program data.

We also introduced a memory hog, which after some
time slowly allocates half the memory in the system,
holds onto the memory for a while and eventually slowly
releases it. As the memory hog allocates memory, the
resource manager automatically shrinks the main pro-
gram’s cache. The execution of the benchmark in the
presence of the memory hog is shown in figure 3. As can
be seen, the resource manager automatically shrinks the
benchmark’s cache as required.

5 Conclusion

Applications are expected to run on an increasingly wide
range of hardware configurations and in more dynamic
environments. Our initial experiments suggest that op-
erating system support for adaptation can reduce global
memory requirements, improve systemic performance,
or both. Adaptation requires a reexamination of operat-
ing system support for adaptive applications, which has
traditionally been ignored by commodity systems forc-
ing application to use ad hoc adaptation strategies. These
strategies are no longer reliable.

Enabling effective adaptations requires new memory
management schemes that explicitly consider adaptive
applications, and operating system support of applica-
tions to maximize adaptation precision and agility. We
have presented Viengoos, a system that we are using to
explore these problems.

References
[1] A. W. Appel. Garbage collection can be faster than stack alloca-

tion. Information Processing Letters, 25(4):275–279, 1987.
[2] P. Cao, E. W. Felten, and K. Li. Application-controlled file

caching policies. In USENIX Summer 1994 Technical Confer-
ence, June 1994.

[3] P. J. Denning. In the Beginning: Recollections of Software Pio-
neers, chapter Before Memory was Virtual, pages 250–271. IEEE
Computer Society Press, 1997.

[4] P. Druschel, V. S. Pai, and W. Zwaenepoel. Extensible kernels are
leading OS research astray. Proceedings of the 6th Workshop on
Hot Topics in Operating Systems, May 1997.

[5] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel:
An operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pages 251–266, Dec. 1995.

[6] C. Fleck. What’s the coolest app that doesn’t work on the iPhone
.... yet ? http://community.citrix.com/pages/
viewpage.action?pageId=51937665, Dec. 20, 2008.

[7] J. Gettys. $100 laptop / OLPC (One Laptop Per Child). http:
//gettysfamily.org/wordpress/?p=11, Nov. 2005.

[8] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan.
Melange: creating a “functional” internet. In Proceedings of Eu-
roSys 2007, pages 101–114, Mar. 2007.

[9] R. Needleman. Technology marches backward. http://
reviews.cnet.com/4520-3000_7-6542073.html,
June 2006.

[10] J. Nielsen. Usability Engineering. Morgan Kaufmann, San Fran-
cisco, 1994.

[11] S. Parmenter. Firefox 3 memory usage.
http://blog.pavlov.net/2008/03/11/
firefox-3-memory-usage/, Mar. 2008.

[12] S. Peter, A. Baumann, T. Roscoe, P. Barham, and R. Isaacs. 30
seconds is not enough! A study of operating system timer usage.
In Proceedings of EuroSys 2008, Glasgow, Scotland, UK, April
2008. ACM.

[13] C. A. Waldspurger. Memory resource management in VMware
ESX server. In Proceedings of the 5th USENIX Symposium on
Operating Systems Design and Implementation, Dec. 2002.

[14] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. Cramm:
Virtual memory support for garbage-collected applications. In
Proceedings of the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation, Nov. 2006.

5

