
Viengoos: A Framework for
Stakeholder-Directed Resource Allocation

Neal H. Walfield
The Johns Hopkins University

neal@cs.jhu.edu

Abstract

Submitted to EuroSys 2009.

General-purpose operating systems not only fail to provide
adaptive applications the information they need to intelli-
gently adapt, but also schedule resources in such a way that
were applications to aggressively adapt, resources would be
inappropriately scheduled. The problem is that these systems
use demand as the primary indicator of utility, which is a
poor indicator of utility for adaptive applications.

We present a resource management framework appropri-
ate for traditional as well as adaptive applications. The pri-
mary difference from current schedulers is the use of stake-
holder preferences in addition to demand. We also show how
to revoke memory, compute the amount of memory available
to each principal, and account shared memory. Finally, we
introduce a prototype system, Viengoos, and present some
benchmarks that demonstrate that it can efficiently support
multiple aggressively adaptive applications simultaneously.

Categories and Subject Descriptors D.4.10.a [Operating
Systems]: Support for Adaptation

Keywords Resource Management, Accounting, Adaptive
Applications, Utility, Stakeholder Directed

1. Introduction
General-purpose operating systems schedule resources based
on the principles of the working set model of program behav-
ior, namely, that a program exhibits locality of reference and
its demand is independent of its environment (7). For pro-
grams conforming to this model, resources can be efficiently
scheduled by observing memory accesses and ensuring that
active programs have their recently-used memory in core.
This is the case, for instance, for a text-book implementa-
tion of quick sort: its resource requirements are primarily
determined by its input. Providing it with more memory

[Copyright notice will appear here once ’preprint’ option is removed.]

than the working set model of program behavior determines
is appropriate does not improve its performance; providing
it with less simply delays its completion.

Many programs could improve both their performance as
well as the system’s by adapting to their environment. These
programs could select among multiple algorithms or vary
algorithmic parameters according to resource availability so
as to improve some performance metric. Such programs
include those that use a garbage collector (3; 1; 24), those
that could use a cache, and those that could reduce quality to
better ensure some timeliness property (6; 13).

Most programs which could adapt do not. This is because
a program can only gain useful knowledge of its environ-
ment using ad-hoc heuristics, which tend to be difficult to
implement and sufficiently unreliable that not adapting is not
only simpler but also more efficient.

The inability to effectively adapt is becoming more acute
by the trend to use the same software on an increasingly-
wide spectrum of hardware—from smart phones and internet
tablets to desktops and servers. For such a wide range of
configurations, statically determining the right trade-offs,
e.g., choosing an appropriate cache size at compile time,
results in generally under- or over-utilizing resources.

Enabling effective adaptation on general-purpose operat-
ing systems is not just a question of providing programs
with information regarding the amount of available re-
sources: general-purpose operating systems determine avail-
ability based on observed demand, however, demand is ex-
actly what adaptive applications vary according to availabil-
ity. This is illustrated in figure 1. The result is a positive-
feedback loop, and, ultimately, ineffective scheduling.

As the purpose of adapting is to increase a program’s
utility, we propose a stakeholder-directed resource alloca-
tion scheme in which a computation’s stakeholders influence
how resources are allocated.

A computation’s stakeholders are those agents that have
an interest in its execution. We observe that a computation
typically only directly represents positive utility for a single
stakeholder: the agent that started it. By allocating a compu-
tation’s resources out of its parent’s allocation and allowing
the parent to control how the resources allocated to it are

1 2008/10/25

Kernel
f(demand) = availability

f(availability) = demand
Adaptive Application

availabilitydemand

Figure 1. Adaptive applications create a positive-feedback
loop when managed according to working set principles.
Although the system may stabilize, no mechanism ensures
that it converges to a configuration with maximum utility.

distributed among its children, two properties emerge: a par-
ent is responsible for its children’s allocations, and compu-
tations form a recursive hierarchy with the system adminis-
trator at the root. Within this framework, any negative utility
that a computation attributes to another must be attributed
to a common ancestor, which made the explicit decision to
allocate its resources the way it did. Thus, assuming rational
agents, the schedule will converge towards one with max-
imal expected utility. The remaining difficulty then is en-
abling agents to easily express their preferences.

A naı̈ve approach would have parents provide the param-
eters to a multi-variable utility function for each of their
children. This approach is not usable: users and developers
lack the required information. Our framework uses parent-
assigned, coarse-grained parameters. The resource manager
uses these as well as demand to distribute resources. Agents
then tweak these parameters based on high-level feedback.
This results in a negative-feedback loop, shown in figure 2.

Contributions: This paper makes the following contri-
butions: it presents a framework for stakeholder-directed re-
source allocation; it describes how to revoke memory within
such a framework, how to calculate the amount of memory
available to each computation, and how to account shared
memory; and, it presents a prototype system, Viengoos, that
demonstrates that the framework efficiently supports the run-
ning of multiple adaptive applications simultaneously.

2. Analysis
The transparent multiplexing of storage is a valuable tool in
helping to manage complexity (8). This multiplexing can be
efficiently scheduled when the managed programs conform
to the working set model of program behavior, which models
program behavior as exhibiting locality of reference and
having demand that is primarily a function of its input (7).

Adaptive programs do not conform to this model: their
demand is a function of the available resources. Moreover,
the resources they use are not required for progress: if there
is pressure, they may be forgone. For instance, a garbage col-
lector can vary when collections occur; caches can be sized
according to availability; and, a more appropriate algorithm
or algorithmic parameter, e.g., quality, can be selected.

f(output) =
parameters

Principal

Kernel
f(parameters, demand) =

availability

f(availability) =
(demand , output)

Computation

availabilitydemand

output

parameters

Figure 2. Scheduling feedback loop where the parent-
supplied scheduling parameters in addition to demand de-
termine the schedule.

Supporting adaptive applications does not necessarily re-
quire exporting physical resources and thus forgoing the ad-
vantages of virtual memory: how much memory is avail-
able often suffices. A garbage collector can time collec-
tions so that they occur just before paging would be re-
quired; caches can be sized (and resized) according to the
amount of available memory; and, choosing among alterna-
tive algorithms or selecting the most appropriate parameters
becomes a straightforward exercise. Moreover, the possi-
ble side-effect of using more resources—that contention and
thus the chance of thrashing increases—would disappear as
an application would know when this is about to occur and
could proactively scale its use.

Computing availability within the context of current re-
source managers is not enough to efficiently support adap-
tive applications: their behavior would create a positive-
feedback loop. This arises as their demand is a function of
availability while the resource manager distributes resources
according to demand. This is illustrated in figure 1.

The question then becomes how to distribute resources
given that multiple applications would like to adapt. The
answer suggests itself: as the motivation behind adaptation is
to maximize expected utility, resources should be distributed
so as to maximize the expected utility of the stakeholders.

2.1 Describing Utility
Determining the expected utility that a computation has for
a stakeholder poses a difficult problem: utility is a subjec-
tive measure. Traditionally, general-purpose resource man-
agers have avoided giving too much control to user pro-
grams as this would have provided malicious or buggy pro-
grams significant control of the system. More control is only
a problem if it can be used to create destructive interference
(20): user programs can be relied upon if the quality of the
provided information yields, from their perspective, quali-
tatively similar results. That is, providing good information
must correspond to better performance for the agent itself
and bad information to worse performance.

2 2008/10/25

The problem then is finding an appropriate language for
describing expected utility. The resource manager under-
stands low-level resources such as CPU cycles and frames of
memory. Stakeholders, however, are interested in high-level
metrics such as frames per second and cannot easily express
these requirements in terms of the low-level resources that
the resource manager understands. This is not only because
there are complex data dependencies but also because the
computations that an agent is interested in are often opaque
to it: users and developers have at best a rough notion of
the resource requirements of the programs and libraries they
use; such details are rarely exposed.

A good solution is not one that requires users and pro-
grammers to reformulate their high-level requirements in
terms of low-level resources: this makes the system diffi-
cult to use, decreasing its reliability. Instead, the disconnect
needs to be bridged in a way that allows them to simply and
directly use the metrics they are already interested in.

2.2 Accounting
When distributing resources according to a non-trivial pol-
icy, the relevant resources must be correctly accounted. If
memory is not correctly accounted, then determining how
much a principal uses or is available is less accurate and less
useful. This is often the case for kernel resources.

A mechanism must also be provided to usefully account
shared resources. Memory, for instance, is shared in the form
of program text. Other uses of shared memory are common
and will increase if the principal granularity is increased.

2.3 Dynamic Reallocation
We are specifically interested in better scheduling for dy-
namic, multi-programmed systems, that is, those environ-
ments in which there are multiple programs running si-
multaneously with variable demand, which is characterized
by resource-intense spikes and periods of relative quies-
cence. Such systems include PDA-like devices, desktops,
and multi-service servers. On the first two types of systems,
when a user is interacting with a program, it often exhibits
increased demand relative to when it is in the background,
most of which are at any given time. On a web server, one
site may experience a surge in activity, however, it is unlikely
that this will happensites that it serves at once.

A concern with such systems is the effective utilization
of resources. This means that if a program requires more re-
sources than are available to it and other programs are not us-
ing all of the resources available to them, it ought to be allo-
cated the idle resources—at least until the other programs re-
quire those resources. That is, the desire is that the scheduler
be work conserving and dynamically reallocate resources.

Such a scheduler is poor for hard-real-time applications:
although reclaiming resources may be prompt, it may in-
troduce non-trivial latencies. It is also poor for very high-
security systems: a work-conserving scheduler that exposes
availability introduces a high-bandwidth covert channel.

3. Stakeholder-Directed Management
We now present a framework in which resources are dis-
tributed based on stakeholder preferences with the result that
expected utility is maximized, and in which a program can
easily determine the amount of memory available to it.

3.1 Maximizing Utility
An action’s utility is a subjective measure that is determined
by its stakeholders. An action’s stakeholders are those prin-
cipals that are affected by the action in either a positive or
a negative manner. In the case of resource management, we
are interested in the actions related to resource allocation.

Providing a larger allocation to a computation represents
a non-negative utility to it as well as any principal that has an
interest in its performance. Such an allocation corresponds to
a negative utility for any principal that as a result receives a
smaller allocation but which could have improved its perfor-
mance given a larger allocation. It is also a negative utility
for any principal that has an interest in such principals.

The question then is how to combine these conflicting
preferences. We observe that no program runs for its own
sake, and that a program only directly serves the ends of
the computation that started it. A web browser, for instance,
only directly serves the ends of the user on whose behalf it
runs. For a principal that is not a direct ancestor, resources
allocated to the web browser that it or a computation that
serves its ends could have used represent negative utility.

Because a computation only directly serves the ends of
the principal that started it, it can be logically considered a
part of that principal: ignoring protection issues, the prin-
cipal could have executed the computation itself. As this is
the case for all computations, a recursive hierarchy emerges
with the system administrator at the root.

By then allocating resources to a principal and requiring
that it controls how those resources are allocated among its
child computations, expected utility is necessarily globally
maximized. This is because a computation’s resources are
provided by its sole positive stakeholder. Thus, any negative
utility must be attributed to the nearest common ancestor.
Since it explicitly allocated its resources in the way it did (so
as to maximize its expected utility), the fact that a computa-
tion received less than it desired is consistent with globally
maximizing expected utility. Consider a user with two pro-
grams each of which would like 80% of the user’s allocation.
Maximizing expected utility means respecting the user’s in-
terests, not the programs, which only serve the user.

This approach is also resilient to destructive interference:
when a principal pays for the resources that computations
executing on its behalf use, the principal has a strong incen-
tive to ensure that they are used efficiently and distributed
appropriately; it cannot cheat the system.

Shared servers do not necessarily violate this composi-
tional model. When a server executes some request on behalf
of a client, generally, that request does not represent positive

3 2008/10/25

utility for another client. One reason for this is because such
servers are primarily concerned with decomposing a larger
object, e.g., a file system may decompose a disk partition,
and thus most of its work is traversing meta-data. The client
can then be viewed as executing in the context of the server,
and should use its own resources.

3.2 Allocation Decisions
There are two main ways to allow a principal to control how
its resources are distributed among its children. First, it can
do it itself by interposing on all allocations and revocations.
This is the approach SawMill takes (4). Alternatively, it can
describe the policy and have a third party act on its behalf.

The claimed advantage of the first approach is that
agents are able to implement any policy they like; there
is no system-imposed language in which they must, per-
haps clumsily, express their intents. This appears to provide
fine-grained control over how resources are managed. The
alleged control is an illusion: because multiple agents whose
development is not coordinated must communicate, a way to
negotiate resources must be agreed upon. The result is that
some de facto language will develop with no advantages
over a centrally imposed language. Moreover, this approach
has additional costs: interposition introduces overhead, and,
as resource use is negotiated pairwise, local changes in de-
mand will take longer to propagate through the system than
when using a more agile, central manager.

A centralized approach has an important advantage: it
does not need to support visible revocation (10), which
is required to support recursive revocation. The problem
with visible revocation is that it is a potential source of de-
structive interference, which can only be tamed by way of
timeouts. This introduces a perverse incentive: agents will
keep resources as long as allowed rather than revoking them
promptly. It also adds the requirement that revocation be
real-time capable. This property will deter experimentation,
and make debugging more difficult as bugs may be triggered
by difficult-to-reproduce load factors.

Further, hierarchical revocation results in the situation
where an application receives a revocation request from a
server and must release memory that it got from that server,
even though, memory is fungible and any memory would do.

3.3 Scheduling Parameters
Using utility functions is problematic: whereas a resource
manager deals with basic, low-level resources such as frames
and CPU time, applications are interested in high-level met-
rics such as the time to respond to input, and neither can the
resource manager easily measure higher-level metrics nor
can a principal easily express its high-level metrics in terms
of low-level resources as it usually does not know how the
computations it is interested in are implemented.

There is, however, no requirement to use utility functions;
the goal is to maximize expected utility. This can by done by
way of a feedback loop that, via an iterative process, causes

the scheduler to converge to an optimum. One such feedback
loop was shown in figure 2: the resource manager provides
knobs, which principals tune based on higher-level feedback.

The parameters that determine the resource distribution
policy should be sufficiently expressive and flexible to cover
the majority of the relevant scenarios. This must be tempered
by complexity: the policies should be as simply as possible
to ensure that the intent is easily understood. We propose two
scheduling parameters, a priority and a weight. Allocation
should not be based solely on these parameters, however: a
principal’s demand should be considered to allow easy iden-
tification of slack resources, and its working set should be
taken into account to avoid thrashing. Because it is useful
to allow principals with children to also allocate resources,
child-relative parameters can be added. The presented algo-
rithms do not include these but they are easily incorporated.

Ultimately, the allocation of resources among computa-
tions depends on some human’s priorities and having a user
change even something as simple as an application’s priority
is cumbersome. Fortunately, for interactive systems, utility
can often be inferred by the window manager based on user
interactions. If this is inadequate, a small slider managed by
the window manager can be placed in each program’s title
bar as done in Nemesis. In other cases, developers and dis-
tributors can provide scheduling hints that can be easily con-
firmed by the user during installation, e.g., “audio player.”
Priority A priority parameter allows a principal to deter-
mine the order in which its children have access to its re-
sources: higher-priority children have the right of first re-
fusal and can preempt lower-priority children.

This policy allows a principal to ensure that some child
computations always have the resources they require if the
principal itself has sufficient resources. A window manager
would use this to ensure that the user stays in control: by
giving the input handler a high priority, it can ensure that if
the user wants to terminate some program, he or she can do
so even if that program is consuming a lot of resources.

This policy is also useful for controlling low-priority
principals such as cache managers and background appli-
cations, e.g., a file indexer. By assigning such computations
a lower-priority, the parent is sure that they only have access
to resources that are otherwise unused and unneeded.
Weight A weight parameter is one way to have mul-
tiple children at same priority level. Using a weighted-
proportional share scheduler, a principal with weight 5 is
entitled to 5 times the resources of a principal with weight 1.

This can be used to approximate the importance of prin-
cipals that execute simultaneously: an important principal is
given a larger weight with the result that it is entitled to more
resources and can provide better preference. The weight of
the program instance with the focus, for instance, may be
increased, and that of minimized programs decreased.

4 2008/10/25

system

Alice

Prog 1 Prog 2

Bob

Prog 3 Prog 4

1/100
80; 50

1/100
20; 50

1/9
10; 72

1/1
70; 8

2/1
10; 50

1/1
10; 40

priority/weight
alloced; share

Figure 3. Scheduling parameters and possible allocations
and shares. Alice and Bob have the same priority and same
weight and thus are entitled to the same amount of resources.
Alice’s program 1 and program 2 have the same priority,
however, the former is entitled to 9 times as many resources
as the latter. Bob’s program 3 has a higher priority than his
program 4 and thus its demand preempts program 4’s. Bob
(and Bob’s children) can preempt Alice’s resources insofar
as she is using resources to which Bob is entitled.

3.4 Memory Revocation
When there is contention, one or more principals must be
found to preempt resources from. We search from the prin-
cipals that most exceed their fair share according their re-
spective scheduling parameters and working set size.

Algorithm 1 shows our approach. It starts by considering
the root’s children. It sets the working set factor to 1, mean-
ing that it does not consider recently used (active) frames
as allocated. It then iterates over each priority class and se-
lects the principal such that its claimed frames minus its ac-
tive frames corrected for by the working set factor scaled by
its weight is greatest. If this is zero or less, this is repeated
for the next-highest-priority class. If no principals remain, it
doubles the working set factor (giving less weight to active
frames) and repeats. Otherwise, it has found a victim. If that
principal has no children, the algorithm has found the best
victim. Otherwise, it recurses.

Using figure 3 to illustrate, the scheduler starts at the
root and selects Alice: her and Bob’s priority and weight are
equal meaning they are each entitled to 50% of their parent’s
resources; as Alice has allocated 80% and Bob 20%, Alice
has most exceeded her share. This process is then repeated
for Alice. This time, her Program 2 is selected. Since it has
no children, memory is revoked from it.

3.5 Computing Memory Availability
The recursive hierarchy can be used to compute the amount
of memory that is available to a principal. A way to do this
is shown in algorithm 2. The idea is to traverse the hierarchy
and set each principal’s availability to the maximum of its
share and its allocated memory and to add to that the amount
of free memory. We also adjust for local pressure, e.g., when
a trend suggests that the principal will soon have less avail-
able memory, thereby better enabling proactive adaptation.

As other principals may have allocated more than their
share, part of this memory could be “stolen” by a principal.

Algorithm 1 Selecting a principal to revoke resources from.
1: function SELECTVICTIM(principal)
2: ws factor ← 1
3: loop
4: for P ∈ { children(principal) grouped by

priority, lowest to highest } do
5: excess ← 0
6: for p ∈ P do
7: t← (p.alloced − p.working set

/ws factor)/p.weight
8: if t > excess then
9: excess ← t

10: victim ← p
11: if victim 6= nil then . If we have a victim.
12: return SelectVictim(victim)
13: ws factor ← ws factor · 2

Algorithm 2 Computing the amount of available memory.
1: procedure AVAILABLE(principal , mem)
2: principal .available ← mem
3: for P ∈ { children(principal) grouped by priority,

highest to lowest } do
4: alloced ← weight ← 0
5: for p ∈ P do
6: alloced ← alloced + p.alloced
7: weight ← weight + p.weight
8: extra ← 0
9: for p ∈ P do

10: share ← mem · p.weight
weight

11: if p.alloced > share then
12: extra ← extra + p.alloced − share
13: for p ∈ P do
14: share ← mem · p.weight

weight

15: entitle ← max (p.alloced , share)
16: . Approximate extra frames p could steal.
17: if p.alloced > share then
18: steal ←

(
extra · p.weight

weight

)
−

(p.alloced − share)
19: else
20: steal ← extra · p.weight

weight

21: free ← mem − alloced
22: Available (p,

(entitle + steal + free) · p.pressure)
23: mem ← mem − alloced

For instance, consider three activities with the same weight,
one of which has allocated all of the memory and the other
two, none. When just considering the share, the available
memory for the latter two are 1/3. If one of the principals
allocates its share, the new configuration is 2/3s, 1/3 and 0.
There is an implicit first-come first-served policy. If would
be better if the unused memory entitled to the third princi-
pal is distributed according to the other principals’ weights,
which would result in each having half the resources.

5 2008/10/25

The algorithm to calculate the amount that can be stolen
only approximates the correct amount. The problem is that
largely different weights will result in increasingly incorrect
results because we scale the extra memory according to the
total weight. This tradeoff avoids having to iterate over all
the principals in the priority group and calculating how much
each can steal from the others based on their respective
weights, which is quadratic in principals.

Availability can be exposed either via a polling or a sub-
scription interface. The former is useful for applications that
have occasional adaptation points. If an application can al-
most always adapt, e.g., a garbage collector can collect at
almost any time, and a cache can always shrink, the subscrip-
tion model enables agile adaptations with low overhead.

Availability information should be updated when avail-
ability changes. A naı̈ve approach updates it periodically.
A more intelligent one detects when availability has signifi-
cantly changed and only then recomputes it.

3.6 Usage
For a principal to control the allocation policy of a compu-
tation, before starting the computation, it creates a principal
object, sets a policy, and then delegates the child access to it.
By designing the system such that resources are accounted
to the principal that uses them, the principal can be sure that
the computation is constrained by its policy.

When a principal uses server-implemented functionality,
it again creates a principal object and sets a policy. It then
invokes the server and passes a reference to the principal.
The server can use it to allocate resources on behalf of
the client, which are scheduled according to the client’s
policy. As the client controls the schedule and can revoke
resources at any time, the server needs to be careful to
avoid allowing this to result in destructive interference. This
control is necessary to allow safe interaction with untrusted
servers. Handling this requires careful data structure and
interface design. Bounded timeouts, which guarantee the
client promptness but enable server recovery, can also help.

3.7 Allocating Resources
There are two general ways to allocate resources. Either a
principal can request a schedule before starting a compu-
tation, and the resource manager can admit it or not, or a
principal can request resources lazily, i.e., on demand.

Using the former approach, a program requests a sched-
ule before starting the computation. A more flexible variant
is that a program submits an array of acceptable schedules,
and the resource manager chooses the highest-ranked sched-
ule that does not violate its policy (17). This requires being
able to calculate a priori the required resources. We argued
in the context of describing utility functions that this is hard.

With the latter approach, a program allocates resources
while running a computation and at the point that it needs
them. The system is also able to reclaim resources at any

time, increasing its flexibility. This is how resources are
usually scheduled on Unix-like systems.

4. Implementation
We implemented Viengoos on top of the L4Ka::Pistachio
microkernel (23). We used Pistachio as a convenient hard-
ware abstraction; we specifically avoided any advanced fea-
tures that would have violated Viengoos’s design goals.

Viengoos is an object-capability microkernel (9; 22).
In an object-capability system, operations are modelled as
method invocations on an object. Objects are designated by
capabilities, which are protected references. Capabilities in-
clude their naming context, thereby avoiding the confusion
arising from symbolic names (21).

Viengoos is designed to be resilient to destructive in-
terference (20), to thoroughly account accounted resources,
to avoid kernel allocations, to export atomic, restartable in-
terfaces (11), to provide recursively virtualizable interfaces
(12), and to use activation-based communication (2).

4.1 Primordial Objects
The Viengoos virtual machine augments the hardware in-
terface with seven objects: folios, data pages, capability
pages, threads, activities, message buffers and end points.
In our prototype implementation, only the first five are dis-
tinguished: a thread object encompasses a message buffer,
and end points are unimplemented.
Folios A folio holds the meta-data for 128 objects. The
meta-data was separated from the object to ensure that an
object’s size remains an easy to manage power-of-two. The
meta-data is explicitly represented to ensure that it is prop-
erly accounted and to reduce sharing.
Pages A page contains data, uninterpreted by the kernel.
Cappages A cappage contains 256 capability slots. A ca-
pability slot may contain a capability. Cappages are also
used in the construction of address spaces. In this role, they
function as page tables.
Threads A thread encapsulates an execution context. This
includes capability slots that designate the address-space
root, and current activity. It also includes an architecture-
specific register file. Multiple threads can execute in the
same address space by using the same address-space root.
Activities An activity encapsulates a resource principal
and a scheduling policy. It is orthogonal to an execution con-
text. The intent is that an activity be used to account all ba-
sic resources including storage, memory, I/O and CPU time.
Our implementation only accounts storage and memory.

An activity is able to control the resources to which its
children have access. This is done by setting each child’s
scheduling parameters. This requires a strong reference to
the activity. Because an activity that has children may also
allocate memory, a mechanism is required to determine if
the memory should be revoked from the parent rather than
one of its children. This is treated in a uniform manner by

6 2008/10/25

also having a so-called child-relative priority and weight.
This can be set via a weak-capability. This does not allow
for any interference as the child-relative parameters do not
affect how much memory the activity is entitled to but how
to distribute the memory between an activity and its children.

When an activity is destroyed, all resources allocated to it
are revoked. As any children are allocated out of an activity’s
own resources, this also destroys any children. By running
each program as a separate activity, destroying an activity is
a convenient way to ensure that when it is done, all resources
it allocated and did not explicitly arrange to save with some
other entity—including its child programs—are freed.
Message Buffers A message buffer encapsulates a mes-
sage includes capabilities and untyped data, and a capability
slot referencing a thread to activate. Our prototype does not
include a message buffer implementation. Instead, a thread
object includes this functionality.
End Points An end point indirects access to message
buffers. This is useful for multi-threaded servers. Our pro-
totype does not include an end point implementation.

4.2 Resource Allocation
Whereas storage is allocated and deallocated explicitly,
memory is allocated implicitly on demand. When an ob-
ject that is not in memory is accessed, Viengoos transpar-
ently brings it into memory and accounts the memory to the
appropriate activity. In the case of a page fault, this is the
activity designated by the capability in the faulting thread’s
activity slot; for RPCs, the activity is provided explicitly.

It is important to emphasize that the activity to which
memory is accounted is not necessarily the same activity as
that to which the corresponding storage is accounted. This
matches common usage. The storage used to hold the system
libraries and programs is usually accounted to the system ad-
ministrator but primarily used by program instances running
on behalf of users. Similarly, the storage for a user’s files is
accounted to a principal representing the user, however, the
principals using the data in memory are program instances
running on behalf of the user.

We do not consider the costs of reading data from and
writing data to backing store. This is future work.

4.3 Accounting Memory
A frame is the basic unit of memory allocation. A frame
caches an object on backing store. Associated with each
frame is a management data structure. At system start, the
number of frames is calculated and the meta-data data struc-
tures are allocated. This is possible as the amount of precious
frame meta-data (the data that cannot simply be discarded
without ill effect, unlike, e.g., the software TLB contents) is
known a priori and not dependent on the number of users.

When a frame is allocated to an activity, we say that the
activity is the claimant for the memory, or that it has claimed
it. An activity claims memory that it causes to be allocated,
e.g., when it accesses an object, which is on backing store.

A frame is only claimed by a single activity at a time.
If a frame can be claimed by multiple activities, then a
potentially unbounded amount of meta-data may be required
to manage the frame. Although it is possible to attribute this
meta-data to the right activity, it is difficult to ensure that the
kernel can quickly recover the memory. For instance, paging
such data is complicated, and arbitrarily severing claims
results in less accurate accounting and could be abused.
To deal with shared memory, maintain accurate accounting
information, and only require a small, fixed amount of meta-
data, we account a frame to a single activity at a time but
allow it to migrate among users so as to distribute the cost
according to access frequency.

Transferring a memory claim every time an activity ac-
cesses a frame that it does not claim is too expensive: this
approach causes any shared frame to ping-pong between
claimants, and requires that it remain unmapped perma-
nently so as to detect new users (it would not suffice to keep
the frame unmapped for any but the thread that claimed it
as a thread may execute code on behalf of multiple activi-
ties). Instead, when a frame is accessed by an activity other
than its claimant, the frame is marked shared. Occasionally,
shared frames are unmapped and marked floating. The next
activity to access such a frame claims it. In this way, the cost
of shared memory is divided according to access frequency.

This accounting mechanism will present a problem when
multiple activities have the same access patterns but where
one always lags just slightly behind the other. In such a case,
the former will tend to claim most of the memory. However,
we do not consider this scenario to be realistic. Over the long
term, we expect a fair distribution.

Currently, shared frames are marked as floating every
two seconds. This value was chosen arbitrarily. A higher
frequency would ensure a better cost distribution but also
result in an increased overhead due to the added soft faults.

Periodically marking shared frames as floating can allow
malicious programs to free ride by timing access to shared
resources near the end of a period, that is, after it has likely
been claimed. This is a problem as memory is often shared
among mutually suspicious programs, primarily in the form
of program and library text. To mitigate such an attack,
frames should be marked shared stochastically.

An activity claims memory if it accesses memory that is
inactive. The justification for this is that some activity must
pay for the memory until it is freed either by freeing the
associated storage, or paging it out. If the memory becomes
inactive, then this is an indication that the activity has not
used it in a while. If we were not to transfer the claim to the
memory to the new user, the memory would again become
active (as it was referenced) and thus be less likely to be
freed, however, the original user would continue to pay to
maintain the memory even though it may not again use it.
By transferring the claim, the current user of the memory
assumes the cost of maintaining the memory.

7 2008/10/25

Viengoos uses a simple page ager to track which frames
are active and which are inactive. The ager runs at 4 Hz. It
also unmaps shared pages, recalculates the amount of mem-
ory available to each active activity, and gathers statistics.

4.4 Scheduling
Each activity has priority and weight variables that the parent
can set as well as child-relative priority and weight variables
that it can set. An activity’s need and its working set also
determine the amount of resources it has allocated.

We approximate an activity’s working set by classifying
pages that have been referenced in the last two seconds (the
active pages) as being in some program’s working set. This
is, of course, a particularly poor metric as the working set
is determined in a program’s virtual time (7). This will af-
fect, for instance, interactive programs, which, when blocked
waiting for input, will appear to have an empty working set.
More investigation is required to determine whether this is
sufficient or if a more appropriate metric is required.

4.5 Eviction Policy
Viengoos maintains four memory pools: in-use, free, dirty,
and available. The in-use pool consists of memory that is
claimed; the free pool of memory that is not allocated; the
dirty pool of memory that has been selected for replacement
but that needs to be flushed to disk; and, the available pool
of memory that has been selected for replacement and can
be reused immediately.

If, when allocating memory, the amount of in-use mem-
ory exceeds 7/8 (88%) of the total memory, the pager is ac-
tivated. The pager migrates enough frames from the in-use
pool to the other pools such that the in-use pool does not
exceed 13/16 (80%) of the total memory.

Dirty and available frames remain accounted to the last
claimant so that further costs can be correctly accounted.
Such frames, however, are not counted towards the activity’s
claimed frames. When a dirty or available frame is accessed,
it is claimed and added back to the in-use pool. This is
similar to VMS’s second-chance strategy (19).

The frames to evict are selected using a two-stage algo-
rithm. First, a victim activity is selected according to algo-
rithm 1. Then, some frames are selected for eviction from
that victim based on user-assigned priorities and the time
since the last access. This process is repeated until enough
frames have been removed from the in-use pool such that the
in-use pool does not exceed 80% of the total memory.

4.5.1 Evicting Frames
Given a victim, only the frames claimed directly by it are
considered for eviction. The number of frames that it must
yield is a function of the degree of its excess relative to its
siblings and the number of active frames. Specifically, this
is the activity’s frames minus the priority group’s frames
multiplied by the activity’s weight divided by the priority

group’s weight. This is capped by the number of inactive
frames, which avoids thrashing.

Note that all objects are considered for replacement, not
just data pages. The only objects that are treated specially
are activity objects: an activity object is only evicted if it has
no claims and no child activity is in memory.

5. Experimental Evaluation
To test the effectiveness of our framework, we modified the
Boehm garbage collector to only perform collections when
the amount of allocated memory approaches or exceeds the
amount of available memory.

Our test system had an AMD Duron running at 1.2 GHz
with 64 KB L2 and 512 MB of RAM. We reserved 20%
of the machine’s RAM for Pistachio. For the tests on
GNU/Linux, we used Debian 4.0.

5.1 Collector
For our experiments, we used version 7.0 of the Boehm col-
lector (5). By default, a collection is scheduled when the
amount of memory allocated since the last collection ex-
ceeds one third of the sum of twice the memory occupied
by composite objects, the memory occupied by atomic ob-
jects, twice the stack size, and the root set size. The idea is
two-fold: amortize the cost of collections, and keep the ap-
plication’s memory footprint low.

We added an adaptive scheduler. If the heap exceeds
15/16s the available memory, and the amount of unallocated
memory exceeds a third of the available memory, we try to
discard unused heap memory such that the heap uses less
than 7/8s the available memory. If the heap size still exceeds
15/16s the available memory, and if the amount of memory
allocated since the last garbage collection is at least 1% of
the available memory, we trigger a garbage collection and
again try to discard unused memory such that the heap uses
less than 7/8s the available memory.

For our modifications to be effective, we also changed
two functions to avoid reallocating discarded memory when
there is still non-discarded memory available. Although the
library does support unmapping unused memory, this feature
is not enabled by default and thus appears to be bit rotted.

5.2 Benchmark
We based our benchmark on the John Ellis and Pete Kovac
garbage collection benchmark, which was written around
1997, and ported to the Boehm garbage collector by Hans
Boehm.1 The benchmark allocates two data structures,
which remain live during the entire execution of the pro-
gram. It then enters a loop and builds a number of binary
trees of varying depths. After creating each tree, it immedi-
ately overwrites the pointer to the root node thereby making
it available for collection.

1 Available at http://www.hpl.hp.com/personal/Hans Boehm/gc/
gc bench/GCBench OGC.cpp.

8 2008/10/25

GC Time Time
GCs Sec. % Sec. Rel.

Vieng., Adapt. 108 30.8 10.9% 282.4 1.29
Vieng., Adapt., Hog 165 41.0 13.5% 301.5 1.37
Vieng., Def. 9183 232.8 52.5% 443.2 2.02
Vieng., Def., Hog 9189 255.2 53.6% 475.7 2.17
Linux, Fixed 98 14.4 6.5% 218.9 1
Linux, Fixed, Hog 98 30.6 9.4% 325.5 1.48
Linux, Def. 9325 212.8 53.1% 400.4 1.82
Linux, Def., Hog 9294 213.9 52.9% 403.7 1.84

Table 1. The number of collections, the time spent collect-
ing, and the time to execute for each configuration.

We modified this benchmark in two ways. First, we loop
over the tree creation 100 times, which lengthens the execu-
tion time and allows us to better measure the effectiveness of
the scheduler. Second, we introduced a memory hog. When
enabled, shortly after the benchmark starts, it allocates 5 MB
of memory per second until it has allocated half the initially
available memory (in our case, approximately 170 MB). Af-
ter sleeping for a minute, it then deallocates the memory,
again at a rate of 5 MB per second.

To estimate the possible throughput of the adaptive sched-
uler under a mature, highly-optimized system, we added a
fixed scheduler. It acts like the adaptive scheduler except, it
assumes that a fixed amount of memory is available. For our
experiments, we fixed it to use 350 MB of memory. This is
approximately the amount of memory available to the bench-
mark on Viengoos when there is no memory hog.

When running the benchmark under GNU/Linux, we first
allocate and lock 100 MB of memory. This represents the
approximate difference in the amount of memory available
to user-land programs on our system running GNU/Linux
and on our system running Viengoos. The main issue is the
amount of memory that we statically reserve for Pistachio.
Note that without the memory hog, the time to complete
the benchmark is the same for the case where we lock the
memory as for the case where we do not.

When the memory hog runs on GNU/Linux, we also lock
the memory that it allocates. This is equivalent to the behav-
ior of the memory hog on Viengoos, which only allocates its
share of memory, and thus is not subject to paging. It also
matches the intent: to model the memory use of an active
program with a large working set.

5.3 Results
Table 1 shows the number of garbage collections, the time
spent in the garbage collector, and the execution time for
each of the eight configurations. Figure 4 shows a plot of
time vs. the number of completed iterations. A straight line
corresponds to steady progress, and a steeper slope, to more
work per unit time. Garbage collection pause times can be
recognized by the regular short ledges. Figure 5 shows a
plot of time vs. the benchmark’s heap size. This shows the

0 100 200 300 400
0

20

40

60

80

100

Hog Starts

Hog Ends

Time (seconds)

C
om

pl
et

ed
It

er
at

io
ns Vieng., Adapt.

Vieng., Adapt., Hog
Vieng., Def.

Vieng., Def., Hog
Linux, Fixed

Linux, Fixed, Hog
Linux, Def.

Linux, Def., Hog

Figure 4. Time vs. iterations for Viengoos and GNU/Linux,
using either the adaptive, fixed or default scheduler, and with
or without a memory hog.

0 100 200 300 400
0

100

200

300

Time (seconds)

H
ea

p
Si

ze
(M

B
)

Vieng., Adapt.
Vieng., Adapt., Hog

Vieng., Def.
Vieng., Def., Hog

Linux, Fixed
Linux, Fixed, Hog

Linux, Def.
Linux, Def., Hog

Figure 5. Time vs. heap size for Viengoos and GNU/Linux,
using either the adaptive, fixed or default scheduler, and with
or without a memory hog.

influence of the memory hog on the benchmark’s memory
use and execution time.

We first note that the modified scheduler significantly re-
duces the time spent in the collector. On both systems, when
using the default scheduler, the benchmark spends more than
50% of its time in the collector. This is reduced to less than
15% when using one of our schedulers. We do not expect this
speed-up to be typical: the benchmark specifically exercises
the collector and does little actual work.

Second, on Viengoos, the presence of the memory hog
results in only a marginal slowdown. This is both the case
for the default scheduler and the adaptive scheduler. The
adaptive scheduler is able to adapt and simply use less mem-
ory. This is shown in figure 6: as the memory hog allocates
memory, the amount of memory reported to the garbage
collected program decreases accordingly. When the mem-
ory hog again frees the memory, the amount of available
memory increases. This is reflected in the reported availabil-
ity. The garbage collector immediately adapts to exploit this
memory.

When the memory hog has reached its pinnacle, it appears
that the system reports that there is more memory available

9 2008/10/25

0 50 100 150 200 250 300
0

100

200

300

Time (seconds)

M
em

or
y

(M
B

)

GC Avail.
GC Alloc.
Hog Avail.
Hog Alloc.

Figure 6. Time vs. memory, either allocated or available,
for the benchmark and the memory hog running on Vien-
goos, using the adaptive scheduler.

to it than its actual share. The reason for this is that the
garbage collector maximally uses a bit less than is available
to it, and when it approaches that mark, it frees memory until
it is below a low-water mark. This free memory is reported
as available to the memory hog. If the memory hog were to
use this memory, it would not take away from the amount
available memory reported to the garbage collector.

The execution of the benchmark in the presence of the
memory hog with the default scheduler is not noticeably im-
pacted on either system simply because the default scheduler
significantly restricts the amount of memory that it uses.

On GNU/Linux with the memory hog, the fixed sched-
uler performs, as expected, poorly: while the memory hog is
active, the garbage collector thrashes and makes no notice-
able progress. It is only because the memory hog stops that
the benchmark even completes in a reasonable time. This is
easily seen in figure 4: while the memory hog has allocated
its share, the benchmark makes no progress.

To determine why the benchmark runs slower on Vien-
goos than on GNU/Linux, we profiled our kernel and ap-
plication. We identified three major slowdowns. The first is
the use of a page ager. Viengoos collects reference bits us-
ing Pistachio’s l4 unmap function. Although we use batch-
ing, l4 unmap represents 13% of the execution time. The
next is due to address-space management, which took about
10% of the execution time: although mmap accepts ranges, on
Viengoos, each page is managed individually in user space.
This overhead could be reduced without violating the ob-
ject model by way of an iterator object, which invokes the
same method on an array of capabilities. Finally, page faults
take 5% of the execution time. Using L4, faults are reflected
twice: once when accessing an invalid region, and again,
after the application has installed a page object but before
Viengoos has established an L4 mapping.

5.4 Multiple Adaptive Applications
To determine how well the framework supports multiple
adaptive programs, we ran three instances of our GC bench-
mark. They were run at the same priority level but with
weights 20, 40 and 5. Their starts were staggered.

0 500 1,000 1,500
0

100

200

300

Time (seconds)

M
em

or
y

(M
B

) Avail. 20
Alloc. 20
Avail. 40
Alloc. 40
Avail. 5
Alloc. 5

Figure 7. Three garbage-collected applications.

Figure 7 shows a plot of time vs. the amount of mem-
ory available or allocated to each activity. When the system
starts, the first activity immediately uses all the memory.
When the second instance starts, it allocates its share and
the first instance adapts. When the third instance starts, the
first two instances yield enough memory such that the new
instance is allocated its share. As instances complete, the re-
maining instances adapt to use the newly available memory.

6. Related Work
Significant work has been done exploring how to allow ap-
plications to better manage the resources available to them.
V++ (16), exokernel (10), Nemesis (14) and SawMill (4) ex-
port physical resources and use visible revocation to allow
programs to use application-specific knowledge to manage
their resources. The question of how to distribute resources
among multiple computations is unanswered by exokernel
and Nemesis. Indeed, the exokernel architects state that the
appropriate policies are “determined more by the environ-
ment than by the operating system architecture” (10).

On V++, memory is distributed using a market-based
approach (15). The system page cache manager maintains
a bank account for each top-level principal. Sub-accounts
can be created yielding a hierarchy of accounts. Memory is
leased for a certain amount of time. There are three types of
lease requests: high priority, normal priority and low priority.
The cost of each type of lease is fixed. A high-priority
lease costs more than a normal priority lease; and, a low-
priority lease does not cost anything but may be terminated
early. This fixed-cost scheme was chosen as variable prices
appeared too hard for programmers to reason about. Their
scheme does not consider shared memory.

SawMill tries to avoid imposing policy. To this end, it
uses a distributed approach to managing memory: physical
resources are distributed and visible revocation is used to re-
voke them. The SawMill authors do not address how to dis-
tribute resources among multiple principals. This necessar-
ily imposes some policy. If this architecture were used for a
general-purpose system, some de facto policy would develop
simply because multiple applications must negotiate and the
choice of language is policy. Finally, as applications will of-
ten have memory from multiple sources, e.g., an anonymous

10 2008/10/25

memory server and a file server, and revocation is done hi-
erarchically, the application will be limited in what it can
revoke to the memory that it received from the provider.

Iyer observes that fully-transparent virtual memory has
become a serious impediment to “performance-minded pro-
grammers” (18). Iyer’s solution is that the memory man-
ager maintain and provide interested applications access to
a so-called severity metric that describes memory pressure
as well as the cost of paging. Using this information, coop-
erative applications can continuously and proactively adapt
their memory consumption to available memory. Relative
priorities are expressed using nice values, which are used to
scale the severity metric. This makes using the severity met-
ric to determine whether to free or to page memory useless.

Yang et al. observe that to maximize a garbage collector’s
performance, it should use the largest possible heap size that
fits in memory, however, current systems do not provide the
necessary information (24). To facilitate such adaptations,
they develop a heap-sizing model, which works by reporting
the current working-set size and a target working-set size to
interested processes. A garbage-collected program, however,
does not conform to this model: during normal execution, it
has a small working set relative to its heap size; during a
collection, it references all live objects. As we note, using
working sets to determine demand is ineffective.

7. Concluding Remarks
We argued that many programs have the ability to adapt, and
that doing so is becoming more important given the increas-
ing range of hardware configurations on which software is
expected to run. We observed that adapting is not only prob-
lematic because general-purpose operating systems do not
provide a mechanism to determine how resource availabil-
ity, but that the current resource distribution scheme is inap-
propriate for adaptive applications, which cause a positive-
feedback loop and ineffective scheduling.

We described a resource management framework that
incorporates stakeholder preferences and converges to a
configuration with maximum expected utility by way of a
negative-feedback loop. We presented an algorithm to com-
pute the amount of available memory for each process, and
show how to account shared memory. Our experimental re-
sults show that our framework correctly handles multiple
adaptive applications simultaneously.

References
[1] R. Alonso and A. W. Appel. An advisor for flexible working

sets. In Proc. of the Conference on Measurement and Model-
ing of Computer Systems, pages 153–162, 1990.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler activations: effective kernel support for the
user-level management of parallelism. In Proc. of the 13th
SOSP, pages 95–109, 1991.

[3] A. W. Appel. Garbage collection can be faster than stack allo-
cation. Information Processing Letters, 25(4):275–279, 1987.

[4] M. Aron, L. Deller, K. Elphinstone, T. Jaeger, J. Liedtke, and
Y. Park. The SawMill framework for virtual memory diversity.
In 8th Asia-Pacific Comp. Syst. Arch. Conf., Jan. 2001.

[5] H.-J. Boehm and M. Weiser. Garbage collection in an uncoop-
erative environment. Soft. Prac. Exper., 18(9):807–820, 1988.

[6] M. Cox and D. Ellsworth. Application-controlled demand
paging for out-of-core visualization. In VIS ’97: Proceedings
of the 8th conference on Visualization, 1997.

[7] P. J. Denning. The working set model for program behavior.
Communications of the ACM, 11(5):323–333, May 1968.

[8] P. J. Denning. In the Beginning: Recollections of Software Pi-
oneers, chapter Before Memory was Virtual, pages 250–271.
IEEE Computer Society Press, 1997.

[9] J. B. Dennis and E. C. Van Horn. Programming semantics
for multiprogrammed computations. Communications of the
ACM, 9(3):143–155, Mar. 1966.

[10] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exoker-
nel: An operating system architecture for application-level
resource management. In Proc. of the 15th SOSP, pages
251–266, Dec. 1995.

[11] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullmann.
Interface and execution models in the fluke kernel. In Proc.
of the 3rd OSDI, pages 101–115, 1999.

[12] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines.
Proc. of the 2nd OSDI, Oct. 1996.

[13] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU
scheduler for multimedia operating systems. Technical
report, University of Texas at Austin, Austin, TX, USA, 1996.

[14] S. M. Hand. Self-paging in the nemesis operating system. In
Proc. of the 3rd OSDI, pages 73–86, 1999.

[15] K. Harty and D. Cheriton. A Market Based Approach to
Operating System Memory Allocation, pages 126–155. World
Scientific Publishing, River Edge, New Jersey, 1996.

[16] K. Harty and D. R. Cheriton. Application-controlled physical
memory using external page-cache management. In Proc. of
ASPLOS-V. ACM, Oct. 1992.

[17] D. Hull, W. Feng, and J. W. S. Liu. Operating system support
for imprecise computation. In AAAI Fall Symposium on
Flexible Computation, Nov. 1996.

[18] S. Iyer. Advanced memory management and disk scheduling
techniques for general-purpose operating systems. PhD
thesis, Rice University, Houston, Texas, November 2005.

[19] H. M. Levy and P. H. Lipman. Virtual memory manage-
ment in the VAX/VMS operating system. IEEE Computer,
15(3):35–41, 1982.

[20] M. S. Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, May 2006.

[21] J. H. Saltzer. Naming and binding of objects. In Operating
Systems, An Advanced Course, pages 99–208, 1978.

[22] J. Shapiro and N. Hardy. EROS: A principle-driven operating
system from the ground up. IEEE Soft., 19(1):26–33, 2002.

[23] System Architecture Group. The L4Ka::Pistachio microker-
nel. Technical report, University of Karlsruhe, May 2003.

[24] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss.
Cramm: Virtual memory support for garbage-collected
applications. In Proc. of the 7th OSDI, Nov. 2006.

11 2008/10/25

