
Operating System Support for
General-Purpose Memory-Adaptive Applications

Neal H. Walfield
Johns Hopkins University

neal@cs.jhu.edu

ABSTRACT
Many programs could improve their performance by adapt-
ing their memory use according to availability. If memory
is available, a web browser or DNS server could use a larger
cache; if there is memory pressure, they could use a smaller
one. Memory adaptations are also becoming increasingly
important for scalability: server consolidation is being done
more aggressively and end-users want to run their applica-
tion on a wider-range of hardware configurations. Today,
memory-based adaptations are fragile: general-purpose op-
erating systems do not indicate how much memory a process
should or could use.

Enabling efficient adaptations requires rethinking how mem-
ory is allocated among competing programs, and adding a
feedback mechanism that allows applications to make in-
formed adaptations. In this paper, we present the design and
implementation of a minimum-funding revocation scheduler
for memory. We describe a novel algorithm to compute the
amount of memory available to each resource principal based
on its scheduling parameters and the current configuration,
explain how to communicate this information to the princi-
pals, and show how they can exploit it. We also present a
new mechanism to account shared memory based on access
frequency. We demonstrate the effectiveness of the tech-
niques by showing that multiple applications changed to ex-
ploit this information use the full memory available to them,
and smoothly vary their demand as availability changes.
This also results in significant increases in throughput rel-
ative to the conservative management techniques currently
used.

Categories and Subject Descriptors
D.4.10.a [Operating Systems]: Support for Adaptation;
D.4.2 [Operating Systems]: Storage Management—Main
Memory

Keywords

memory management, adaptation, feedback, accounting

1. INTRODUCTION
An adaptation’s effectiveness is bounded by the quality of
the environmental feedback that informs it. Commodity op-
erating systems make little such information available. The
practical result is that programmers either avoid memory
adaptations or they make their adaptations conservative,
e.g., aggressively shrinking caches if objects are unused for
a short time [26]. The underlying problem is that excessive
memory use leads to thrashing, which usually yields a net
loss in performance.

Historically, most programs’ demands have been a function
of their input. For instance, the resource requirements of a
text-book implementation of quick sort are primarily deter-
mined by its input data. For such programs, a memory-
management strategy based on the working-set model of
program behavior is sufficient to ensure good throughput
and reasonable demand on system resources, and will avoid
thrashing when possible.

Two trends are making memory adaptations more impor-
tant. First, server consolidation is becoming increasingly
common. A program that allocates a static amount of mem-
ory at start up decreases the system’s ability to dynamically
reallocate memory and limits that program’s ability to re-
spond to spikes in demand. Second, the range of hardware
configurations, which commodity applications are expected
to run on, is growing: users want their regular desktop ap-
plications to run on their smart phones [14], for instance.

To better support these scenarios, we propose that operat-
ing systems provide feedback to applications. Feedback will
allow applications to better gauge how much memory they
should use, and to proactively adapt to changes in avail-
ability. This type of information is particularly useful for
programs that use memory caches for computed data, and
garbage collectors, whose collection overhead is often a func-
tion of the number of live objects, not heap size [3].

We consider the use of a minimum-funding revocation sched-
uler to manage memory. We create an allocation hierarchy
and have processes indicate the relative importance of each
of their children. When there is memory pressure, the sched-
uler starts from the root and selects the child computation
that most exceeds its fair share. This is applied recursively.
The selected principal is then signalled that it must free

1

some memory or it will soon be paged.

Using the same scheduling parameters, we present an al-
gorithm that computes how much memory is available to
each principal. This is not simply how much memory it is
currently using plus the amount of unused memory in the
system: in the steady state, we expect most memory to be
allocated; moreover, this devolves to a first-come first-served
policy. Instead, we include how much memory a process
could claim from others as well as allocation trends.

Both of the previous algorithms rely on accurate account-
ing. Many systems do not track the principals to which
memory is allocated. This is not trivial to add: a mech-
anism is needed to determine how to account and revoke
shared memory. We propose accounting shared memory ac-
cording to access frequency. To accomplish this, we rotate
the ownership of a shared frame among its users according to
their respective access frequency. To reduce crosstalk, when
a frame is selected for revocation, it is added to the end of
the eviction list. If another principal accesses it prior to its
eviction, it is saved and accounted to the new principal.

Results are promising. Using our algorithm, we show that
multiple aggressively-adaptive memory applications are able
to fully utilize memory according to their relative priorities
and are able to adapt as new principals enter and leave the
system.

Contributions In summary, this paper makes three contri-
butions: a design for a minimum-funding revocation mem-
ory scheduler; an algorithm to compute how much mem-
ory is available to each process; and, a mechanism to ac-
count shared memory based on access frequency. Our bench-
marks show that the algorithms are effective for multiple
aggressively-adaptive memory applications.

2. BACKGROUND
We consider several application scenarios where feedback is
useful. We then briefly look at hardware trends and their
potential impact on application programming.

2.1 Application Loads
Many programs and libraries could exploit a feedback mech-
anism to improve performance. We survey the DEENS DNS
server, image caching, database caching, and garbage collec-
tors.

In [24], Madhavapeddy et al. demonstrate that DEENS, a
DNS server written in OCaml, can respond to 10% more
queries per second than BIND, the industry standard DNS
server. They also show that adding a query cache to DEENS,
which requires just four lines of code, results in more than
a 50% increase in throughput on their benchmarks. They
experimented with two policies: a cache that grows with-
out bound, i.e., entries are never evicted, and, a cache that
is flushed whenever a garbage collection is initiated. Using
these techniques, the benchmark’s throughput went from ap-
proximately 14,000 queries per second to over 25,000 queries
per second and over 22,000 queries per second, respectively.
Both of these policies have weaknesses: whereas allowing
the cache to grow without bound is susceptible to thrash-
ing, dropping the cache at the start of every collection results

Decompress
Source Image Decompress and Scale

Dimensions Size Time Size Time Size
1600× 1200 429K 0.13s 5.5M 0.40s 2.5M
3008× 2000 2.4M 0.43s 17.2M 0.95s 2.2M

Table 1: The time to decompress and the time to
decompress and scale images to fit in a 764×706 area.
Performed on an Intel Core2 Quad core running at
2.4GHz.

in unnecessarily aggressive cleaning. A better management
strategy is one that sizes the cache according to the amount
of available memory.

Decompressing and scaling images is expensive and can be
usefully cached. Table 1 shows the time it takes to decom-
press and to decompress and scale a 2 megapixel and a 6
megapixel image on a modern desktop machine. According
to Nielsen [25], 0.1 seconds is the limit after which a user no
longer feels that the system reacts instantly. In all cases, the
time to compute the data to display is longer. To improve
the user experience, if there is a chance that an image may
be viewed again and there are idle resources, caching the
data would seem like a good strategy. Again, the difficulty
is in sizing the cache: a too large cache may result in un-
acceptable paging. Programs such as GQview and gThumb
cache the last two viewed images and prefetch one image.
Oftentimes, more memory could be used. For mobile inter-
net devices, however, even this modest cache size will often
be too large. Ideally, the cache should grow to fill the avail-
able memory and the application should be able to shrink it
when there is pressure.

Databases use caches to improve performance. In addition
to overriding the operating system’s buffer management pol-
icy to take advantage of application-specific knowledge [29],
they also cache computed data. For instance, query plans
and query results (both intermediate and final) are non-
trivial to compute and can often be effectively reused [9].
Part of the management of such caches should be sizing them
according to memory availability.

Many garbage collectors could also use feedback to size the
heap, which can improve performance. The sweep phase
of a garbage collector starts at the roots of the process (the
statically-known live data) and traces all pointers to identify
the set of live objects. Any other object must be dead since
it is unreachable: no live object references it. When using a
compacting collector, only the live objects are touched dur-
ing the sweep phase. The result is that for many types of
garbage collectors, the time to perform a collection is pro-
portional to the number of live objects. Since the number
of live objects is independent of the heap size, using a larger
heap results in less frequent collections and an overall de-
crease in the time spent collecting [3]. Yang et al. observe
that this holds in practice [32].

A feedback mechanism could also replace other ad hoc man-
agement strategies such as using time outs to control thread
pool management, e.g., in Apache, and how long to keep
rendered objects such as widgets around when there are no
references [26]. Likewise, it could be used to manage code

2

caches for dynamically generated code [18] and control when
to reap free objects in a user-level slab allocator [7]. Al-
though the tear-down and recreation time may be small, if
there is no pressure, these operations simply represent un-
necessary work.

2.2 Range of Execution Environments
Whereas in the past the execution environment was often
predictable, today, that is changing due to server consoli-
dation and increasing popularity of low-powered consumer
devices running general-purpose applications with dynamic
workloads.

Server consolidation represents a problem as many programs
are configured to use a fixed amount of memory. In a con-
solidated environment, this effectively partitions significant
portions of memory. This reduces the opportunity for better
handling bursts in demand: if many unrelated application
instances are hosted on a single machine and one experi-
ences a spike, it could exploit idle resources to improve its
response if they were available. It also decreases the poten-
tial degree of consolidation: due to access patterns, many
servers see long periods of inactivity followed by spikes in
demand [10].

In the consumer sector, netbooks, mobile internet devices
(MIDs) and smart phones running general-purpose operat-
ing systems have become popular. In 2008, in reaction to
consumer demand for the ability to run their usual programs
on their iPhones, Citrix announced a virtualization environ-
ment to run Windows applications on the iPhone [14]. Even
while consumers embrace these low-end devices, high-end
desktops continue to offer more resources for a potentially-
improved experience. For applications and the system to
be able to provide maximum quality of service, applications
need to take advantage of and not exceed available resources.
Feedback regarding memory availability is a step in this di-
rection.

3. DESIGN
We now present an approach to scheduling memory that
is appropriate for memory-adaptive applications, and show
how to reclaim memory when there is pressure. We then
turn to computing availability given the available scheduling
parameters. Finally, we discuss how to account memory and
provide a solution for dealing with shared memory.

3.1 Allocation
Computing the amount of memory available to an appli-
cation is not as simple as adding the application’s current
allocation and the amount of unallocated memory in the sys-
tem. In their stable state, most systems have little unallo-
cated memory: if memory is not allocated to an application,
it is allocated to the buffer cache. This results in a first-
come first-served allocation policy: when the first adaptive
application sees that there is memory available, it allocates
it; subsequent adaptive applications will see that there is no
memory available and use a minimal footprint.

The goal of an adaptation is to change an application’s be-
havior such that it makes the most of the memory avail-
able to it. The effect is to maximize the application’s ex-

pected utility. To maximize expected utility among compet-
ing entities, memory must be distributed according to their
respective expected utility. The difficulty is in determin-
ing each application’s expected utility function. Ultimately,
these functions depend on a human’s real-world goals, which
are potentially changing, and are difficult for an external ob-
server such as a central memory manager to infer.

One approach to maximizing expected utility system wide
is to allocate memory hierarchically and to allow principals
to control how much each of their children may use. In
such a system, the system administrator distributes memory
among users, users distribute memory among the programs
they start, and the programs distribute memory among any
sub-computations, etc. This maximizes expected utility as
the parent is usually a computation’s primary stakeholder.

If programs actually allocate physical memory to each child,
this complicates dynamic reallocation of memory and po-
tentially makes the revocation protocol difficult. First, pro-
grams must actually understand the memory needs of each
child and the trade-offs associated with different allocations.
This is often difficult for the program itself to know and
reason about, never mind the parent. Second, applications
must also manage deallocations. This means that when a
principal must yield memory, it must determine from which
child memory should be reclaimed. As programs may not
be trusted, this quickly becomes complicated.

The revocation issue can be solved by instead of having par-
ents directly control resource allocations, they provide an
expected-utility function to the memory manager for each
child. Using expected-utility functions, parents have the
same control and similar expressiveness, however, the man-
ager is able to act without having to consult them for ev-
ery allocation and deallocation request. This increases the
agility of reallocation: the memory manager is able to di-
rectly revoke memory from one leaf on one side of the tree
and reallocate it to another leaf on the other side; the shift
need not ripple through the system as it does when ancestors
impose on every allocation and deallocation. This approach
has the added advantage that the expected-utility functions
are in terms of allocation preferences, which are independent
of the actually available resources.

Expected-utility functions still require that parents under-
stand how each child computation uses resources: these
functions are articulated in terms of low-level resources, which
are difficult for humans—programmers as well as users—to
reason about. Relative preferences approximate expected-
utility functions (which, in the end, describe preference re-
lations) but are independent of the actual resources. The
idea is that the resource manager provide more resources to
computations that are more important. Parents then use
the high-level feedback that they do understand to tweak
the preferences as required.

Waldspurger proposes the use of a minimum-funding revoca-
tion scheduler to manage memory in his work on proportional-
share scheduling [30]. The idea is that when memory needs
to be revoked, the resource principal that provides the least
amount of funding per unit is chosen to yield memory. The
underlying principle is essentially a reformulation of eco-

3

nomic supply and demand: as demand increases, prices in-
crease and those who cannot afford the new prices must
do without the goods. (As described in the related work
section, Waldspurger only evaluates this work using a simu-
lation.)

3.1.1 Scheduling Parameters
To use a minimum-funding revocation scheduler to imple-
ment a proportional-share scheduler using the process hi-
erarchy, resource principals assign each of their children a
weight. This weight parameter determines the amount of
its parent’s memory to which each child is entitled.

It is useful to be able to express strict priorities. For in-
stance, some computations should always be able to pre-
empt others. This is the case for the user’s input handler
and window manager, which the user relies on to be able to
control misbehaving programs. Also, some programs should
really only be run if there is nothing else to do, for instance,
a file indexer.

Priorities can be expressed using weights: high-priority tasks
can be given weights that are orders of magnitude larger
than normal-priority tasks, which can in turn be given weights
that are orders of magnitude larger than background tasks.
Alternatively, priorities can be made first class. Conceptu-
ally, a priority level can be thought of as shorthand for an
infinite multiplier.

Although a priority parameter does not add anything to the
expressiveness of the scheduling parameters, it is convenient
and makes working with weights easier. If weights are the
same size as the machine word, there is a greater chance of
overflowing when using them in computations.

In addition to these parameters, demand should also be con-
sidered when allocating memory. As a goal is to maximize
memory utilization, allocating memory to a principal that
has not asked for it is a waste if some other principal could
use it. Thus, demand should be used to inform the maxi-
mum allocation for a principal.

An application’s demand should also be used in determining
its minimum allocation: if a process is allocated less memory
than that required to hold its working set, it will begin to
thrash [11].

We identify three approaches to deal with this potential
thrashing. First, if all related resources are carefully ac-
counted and scheduled, thrashing can simply be ignored
with minimal quality-of-service crosstalk: in this case, a
thrashing program only hurts itself. Second, the process
can be suspended until there is sufficient memory for it to
run. Whether this is better than thrashing is usually best
decided by the parent, which can either be notified by way
of a signal, or can specify the desired policy as an explicit
scheduling parameter. Finally, an application’s working set
can be weighted differently from the rest of its memory. This
can also be specified by the parent. For instance, two weight
parameters could be provided, one for weighting the memory
in the working set, and a second for inactive (and presum-
ably, opportunistic) memory.

Algorithm 1 Selecting a principal to revoke resources from.

1: function SelectVictim(principal)
2: ws factor ← 1
3: loop
4: for P ⊂ { children(principal) grouped by

priority, lowest to highest } do
5: weight per frame ←∞
6: for p ∈ P do
7: if p.alloced > p.ws/ws factor then
8: t← p.weight

p.alloced−p.ws/ws factor

9: if t < weight per frame then
10: weight per frame ← t
11: victim ← p

12: if victim 6= nil then
13: return SelectVictim(victim)

14: ws factor ← ws factor · 2

These approaches can also be combined. For instance, a
parent might indicate that a child’s working set should only
count half and if that is still not enough to ensure that it
continues to run without significant paging, it should be
suspended.

3.1.2 Allocation Contract
There are two general ways to allocate resources. Either a
principal can request an allocation (or a list of useful allo-
cations and preferences [19]) before starting a computation,
e.g., 100 MB for 20 seconds, and the resource manager can
admit it or not, or a principal can request resources lazily,
i.e., on demand.

Obtaining an allocation before committing to a computation
ensures that the resources required for the computation are
available for the duration of the computation. A difficulty
with this is that programmers must be able to estimate the
resources required for the computation a priori. However,
if a programmer is successful, this can improve quality-of-
service as the operating system will not preempt the re-
sources while they are being used, which can result in paging
or potentially complicated application recovery mechanisms,
e.g., rolling-back state and using an approach that requires
less memory.

When resources are allocated on demand, a program allo-
cates resources at the point in time that it needs them. This
is how resources are usually scheduled on Unix-like systems.
This approach makes bringing up applications easier. Typ-
ically, these allocations are not accompanied by a temporal
guarantee; the system can reclaim them at any time, which
improves systems scheduling flexibility but complicates ap-
plication efforts to ensure a particular quality of service.

Due to the difficulty that we perceive with programmers
specifying memory allocations and the fact that most appli-
cations are written to use an on-demand interface, we con-
centrate on the latter and leave integrating memory reser-
vation as future work.

3.1.3 Revocation Algorithm
Algorithm 1 presents a memory revocation approach for a
system using hierarchical allocations, which have no mini-

4

mum duration (i.e., memory can be revoked at any time),
and in which each principal is assigned a weight and a pri-
ority. The algorithm considers a principal’s working set by
initially completely excluding it. If this would result in not
being able to revoke any memory, it gives the working set
less weight and repeats.

The algorithm is called by the memory manager, which
passes it the root resource principal. It starts by setting
the working set factor to 1. Given the set of principals in
the lowest priority class, it selects the principal such that
the weight per frame accounted to it minus its working-set
size corrected by the working set factor is smallest. If this
is not positive for all principals in the priority class, this is
repeated using the next-highest-priority class. If this is the
case for all priority classes, the algorithm doubles the work-
ing set factor (giving less weight to each principal’s working
set) and repeats. Otherwise, it has found a victim. If that
principal has no children, the algorithm terminates. Other-
wise, it recurses.

Given a victim, a local revocation scheme can be used. For
instance, some least-recently-used frames accounted to the
principal may be revoked.

3.2 Availability
The allocation hierarchy can be used to compute the amount
of memory that is approximately available to a principal.
Publishing this information allows an adaptive program to
reliably determine if it can grow its allocation without being
paged and when it should shrink its allocation to avoid being
paged.

As a first approximation, a principal’s availability is its share
of the resources. Consider, however, a high-priority princi-
pal and a low-priority one. Using this measure, the for-
mer’s share is all of the memory and the latter’s share is
none. Although the high-priority principal could preempt
resources allocated to the lower-priority principal, it need
not. If it appears not to want to do so, reporting to the
low-priority principal that no memory is available to it is
counter-productive.

A more useful approximation considers not only the prin-
cipals’ scheduling parameters but also their current alloca-
tions. Assuming that most programs are generally quies-
cent, a reasonable approximation is to define a principal’s
availability as the amount of memory that the principal
could allocate. That is, a principal’s availability is what
it has allocated, what is unallocated and what it could pre-
empt. This is easy to calculate when just considering the
weight and priority scheduling parameters. A principal can
preempt nothing from higher-priority principals and every-
thing from lower-priority principals. From principals with
the same weight, it can preempt memory from those prin-
cipals with a smaller weight-per-frame than its weight-per-
frame. In particular, it can preempt memory from them
until their respective weight-per-frame equals its own. Algo-
rithm 2 shows how to compute the total amount of memory
available to each principal using this idea.

This strategy effectively captures the amount of memory
a process could use, however, it does not enable proactive

Algorithm 2 Compute the amount of available memory
based on the amount a principal could preempt.

1: procedure Available(principal)
2: avail← principal .avail
3: for P ⊂ children(principal) grouped and sorted

by priority, highest to lowest do

4: for p ∈ P do
5: avail - = p.alloc

6: for p ∈ P do
7: for q ∈ P do

8: if q.weight
q.alloc

≤ p.weight
p.alloc

then
9: w += q .weight

10: a += q .alloc

11: p.avail ← p.weight·a
w

+ avail

12: for p ∈ children(principal) do
13: Available(p)

adaptation to memory pressure. Consider what happens as
some principal begins to allocate memory: once all mem-
ory has been allocated, it will begin to preempt memory
from others. A principal’s reported availability will only re-
flect the change after the system has already preempted its
memory. The availability metric can be improved by also
incorporating allocation trends.

Assuming that recent allocations are generally a sign of fu-
ture allocations, i.e., that a principal will try to allocate (or
deallocate) an amount of memory in the near future pro-
portional to the amount of memory it recently allocated, we
can first simulate the allocations arriving at an effective allo-
cation and then compute each principal’s availability using
Algorithm 2 but using each principal’s effective allocation in
place of its actual allocation.

Algorithm 3 shows how to compute the effective allocation
of each principal. The basic idea is that it determines how
much memory each principal would have available if each
principal allocated the same number of frames as it recently
allocated. The presented algorithm allocates just one frame
at a time. This is inefficient but can be optimized to run in
O(|principals2|) time by moving frames in batches.

3.2.1 Publishing Availability
Availability can be exposed either via a polling or a subscrip-
tion interface. The former is useful for applications that have
occasional adaptation points. If an application can almost
always adapt, e.g., a garbage collector can collect at almost
any time, and a cache can always shrink, the subscription
model enables agile adaptations with low overhead.

Using a subscription model, it is also possible to send mes-
sages when memory is about to be revoked from a principal.
If the system holds some memory is reserve, it is possible to
continue to satisfy allocations while giving the victim princi-
pal some time to free memory. This reduces the need some-
what for Algorithm 3.

3.3 Accounting
The ability to accurately implement the previous algorithms
relies on accurate accounting information: if the system does

5

Algorithm 3 Compute each principal’s effective allocation
assuming it tries to allocate as much as it recently allocated.

1: procedure EffectiveAllocation(principal)
2: avail← principal .avail
3: for p ∈ children(principal) do
4: if p.rec alloc < 0 then . Freeing
5: p.eff alloc ← p.alloc + p.rec alloc
6: avail += p.rec alloc
7: else
8: p.eff alloc ← p.alloc

9: for P ⊂ children(principal) grouped and sorted
by priority, highest to lowest do

10: for p ∈ P do
11: avail - = p.alloc

12: for p ∈ P do
13: alloc ← p.rec alloc
14: while alloc > 0 do
15: if avail > 0 then
16: avail −−
17: p.eff alloc + +
18: else

19:

Select q ∈ (children(principal)
s.t. eff alloc > 0,
priority is minimal, and

weight
eff alloc

is minimal)

20: if p = q then
21: break
22: q .eff alloc −−
23: p.rec alloc −−
24: alloc −−
25: for p ∈ children(principal) do
26: EffectiveAllocation(p)

not track which frames are accounted to a principal, deter-
mining its weight per frame is guesswork; further, if it is not
known which frames a principal is using, it is impossible to
implement a local revocation policy.

One difficulty with memory accounting comes from shared
memory. A possible solution is to have all users of mem-
ory split the cost evenly. There are two issues with this
approach. First, it is unclear what should be done when a
principal is selected to yield memory and a shared frame is
chosen for eviction. Second, accounting a frame to all users
requires storage proportional to the number of users.

We propose that a frame be assigned to a single principal
at a time and that ownership be rotated according to ac-
cess frequency. The result is that the amount that any one
principal pays is proportional to its use. Also, the resource
manager is able to use a fixed size data structure for man-
aging a frame.

Detecting use can be accomplished by occasionally unmap-
ping shared frames and then assigning the frame to a new
owner on the next access. A possible disadvantage of this
approach is that it increases the number of soft page faults.

Timing when shared frames are unmapped is important. Pe-
riodically unmapping shared frames could allow malicious
programs to free ride by timing their access near the end of

an epic, that is, after the frame has likely been claimed. To
mitigate such an attack, the time between unmaps should
be determined stochastically.

4. IMPLEMENTATION
To evaluate the proposed algorithms, we implemented a pro-
totype system called Viengoos. Viengoos is an activation-
based [2, 27], object-capability microkernel [12, 28].

4.1 Primordial Objects
The Viengoos virtual machine augments the hardware inter-
face with seven objects: folios, data pages, capability pages,
threads, activities, messengers and end points. Objects are
designated using capabilities, which include a weak bit (thus
distinguishing two access rights, a “strong” access right and
a “weak” access right).

Folios A folio holds the meta-data for 128 objects. Meta-
data was separated from objects to ensure that an object’s
size remains an easy-to-manage power-of-two. The meta-
data is explicitly represented to ensure that it is properly
accounted and to reduce sharing.

Pages A page contains data, uninterpreted by the kernel.

Cappages A cappage contains 256 capability slots. A
capability slot may contain a capability. Cappages are also
used in the construction of address spaces. In this role, they
function as page tables.

Threads A thread encapsulates an execution context. It
includes capability slots that designate the address-space
root, and current activity. It also includes space for a copy
of the platform’s register file. Multiple threads can execute
in the same address space by using the same address-space
root.

Activities An activity encapsulates a resource principal
and a scheduling policy. Like a resource container [5], it is
orthogonal to an execution context. All allocations are done
with respect to some activity. An activity’s parent is the
activity to which it is accounted. An activity includes the
weight and priority scheduling parameters. These may only
be changed by way of a strong capability.

Because an activity that has children may also allocate mem-
ory, a mechanism is required to determine if the memory
should be revoked from the parent rather than one of its
children. This is treated in a uniform manner by also hav-
ing so-called child-relative priority and weight scheduling pa-
rameters. These can be set via a weak capability. This does
not enable any interference as the child-relative parameters
do not affect how much memory the activity is entitled to
but how to distribute the memory available to the activity
between an activity and its children.

When an activity is destroyed, all resources allocated to it
are revoked. As any child activities are allocated out of an
activity’s own resources, this also destroys any children. By
running each program as a separate activity, destroying an
activity is a convenient way to ensure that when it is done,
all resources it allocated and did not explicitly arrange to

6

save with some other entity—including its child programs—
are freed.

Messengers A messenger encapsulates a message and in-
cludes capabilities, untyped data, and a capability slot indi-
cating the thread to optionally activate on message receipt
and delivery. Messengers enable reliable, asynchronous IPC.

End Points An end point indirects access to messengers.
This enables multi-threaded servers to expose a single entry
point. Our prototype does not include an end-point imple-
mentation.

4.2 Resource Allocation
Whereas storage (e.g., data pages) is allocated and deallo-
cated explicitly, memory frames are allocated implicitly, on
demand. When an object that is not in memory is accessed,
Viengoos transparently brings it into memory and accounts
the memory to the appropriate activity. In the case of a
fault, this is the activity designated by the capability in the
thread’s activity slot; for RPCs, the activity is provided ex-
plicitly.

It is important to emphasize that the activity to which mem-
ory is accounted is not necessarily the same as that to which
the corresponding storage is accounted. This matches com-
mon usage. The storage used to hold the system libraries
and programs is usually accounted to the system adminis-
trator but primarily used by program instances running on
behalf of users. Similarly, the storage for a user’s files is
accounted to a principal representing the user, however, the
principals using the data in memory are program instances
running on behalf of the user.

4.3 Accounting
A frame is the basic unit of memory allocation. A frame
caches an object on backing store. Associated with each
frame is a management data structure. At system start,
the number of frames is calculated and the meta-data data
structures are allocated. This is possible as the amount of
precious frame meta-data (the data that cannot simply be
discarded without ill effect, unlike, e.g., the software TLB
contents) is known a priori and not dependent on the num-
ber of users.

When a frame is allocated to an activity, we say that the ac-
tivity is the claimant for the memory, or that it has claimed
it. An activity also claims memory that it causes to be al-
located, e.g., when it accesses an object that is on backing
store. An activity claims memory if it accesses memory that
is inactive. The justification for this is that some activity
must pay for the memory until it is freed either by freeing
the associated storage, or paging it out. If the memory be-
comes inactive, then this is an indication that the activity
has not used it in a while.

To deal with shared memory, maintain accurate accounting
information, and only require a small, fixed amount of meta-
data, we account a frame to a single activity at a time but
allow it to migrate among users so as to distribute the cost
according to access frequency. To do this, when a frame is
accessed by an activity other than its claimant, the frame is
marked shared. Occasionally, shared frames are unmapped

and marked floating (and, the shared mark is removed). The
next activity to access such a frame claims it and removes
its floating status. In this way, the cost of shared memory
is divided according to access frequency.

Currently, shared frames are marked as floating every two
seconds. This value was chosen arbitrarily. A higher fre-
quency ensures a more accurate distribution of the costs but
also results in an increased overhead due to the added soft
faults.

Viengoos uses a simple page ager to track which frames are
active and which are inactive. The ager runs at 2 Hz. Ev-
ery two seconds, it also unmaps shared pages, recalculates
the amount of memory available to each active activity, and
gathers statistics.

4.4 Scheduling
Each activity has priority and weight variables that the par-
ent can set as well as child-relative priority and weight vari-
ables that it can set. An activity’s need and its working set
also determine the amount of resources it has allocated.

We approximate an activity’s working set by classifying pages
that have been referenced in the last two seconds (the ac-
tive pages) as being in some program’s working set. This
is, of course, a particularly poor metric as the working set
is determined in a program’s virtual time [11]. This will af-
fect, for instance, interactive programs, which, when blocked
waiting for input, will appear to have an empty working set.
More investigation is required to determine whether this is
sufficient or if a better approximation should be used.

4.5 Eviction Policy
Viengoos maintains four memory pools: in-use, free, dirty,
and available. The in-use pool consists of memory that is
claimed; the free pool of memory that is not allocated; the
dirty pool of memory that has been selected for replacement
but that needs to be flushed to disk; and, the available pool
of memory that has been selected for replacement and can
be reused immediately.

If, when allocating memory, the amount of in-use memory
exceeds 7/8s of the total memory, the pager is activated.
The pager migrates enough frames from the in-use pool to
the other pools such that the in-use pool does not exceed
13/16s of the total memory.

Dirty and available frames remain accounted to the last
claimant so that further costs can be correctly accounted.
Such frames, however, are not counted towards the activ-
ity’s claimed frames. When a dirty or available frame is
accessed, it is claimed and added back to the in-use pool.
This is similar to VMS’s second-chance strategy [23].

The frames to evict are selected using a two-stage algorithm.
First, a victim activity is selected according to algorithm 1.
Then, some frames are selected for eviction from that victim
using a least-recently-used policy. This process is repeated
until enough frames have been removed from the in-use pool
such that the in-use pool does not exceed 13/16s of the total
memory.

7

4.5.1 Evicting Frames
Given a victim, only the frames claimed directly by it are
considered for eviction. The number of frames that it must
yield is a function of the degree of its excess relative to its
siblings and the number of active frames. Specifically, this
is the activity’s frames minus the priority group’s frames
multiplied by the activity’s weight divided by the priority
group’s weight. This is capped by the number of inactive
frames, which avoids thrashing.

Note that all objects are considered for replacement, not
just data pages. The only objects that are treated specially
are activities: an activity object is only evicted if it has no
claims and no child activity is in memory.

5. EVALUATION
We evaluate our framework using two main benchmarks.
First, we modified the Boehm garbage collector to only per-
form collections when the amount of allocated memory ap-
proaches or exceeds the amount of available memory. Sec-
ond, we developed a cache manager, which can either use a
fixed-sized cache or can adapt the cache to the amount of
available memory. Both resulted in significant performance
improvements. We also conducted an experiment to deter-
mine the cost of the proposed shared-memory accounting
scheme. The results show that the overhead is minimal.

Our test system had an Intel Core2 Quad core running at
2.4GHz with a 4MB L2 cache and 2GB of RAM. All bench-
marks were run in uniprocessor mode. For the tests on
GNU/Linux, we used Debian 5.0.

5.1 Garbage Collection
For our experiments, we used version 7.0 of the Boehm col-
lector [6]. By default, the Boehm collector schedules a col-
lection when the amount of memory allocated since the last
collection exceeds one third of the sum of twice the mem-
ory occupied by composite objects, the memory occupied by
atomic objects, twice the stack size, and the root set size.
The idea is two-fold: amortize the cost of collections, and
keep the application’s memory footprint low.

We added an adaptive scheduler. If the heap exceeds 15/16s
of the available memory (the threshold), and the amount of
unallocated memory exceeds a third of the available memory,
we try to discard unused heap memory such that the heap
uses less than 7/8s of the threshold. If the heap size still
exceeds the threshold, we trigger a garbage collection and
again try to discard unused memory such that the heap uses
less than 7/8s of the threshold.

For our modifications to be effective, we also changed two
functions to avoid reallocating discarded memory when there
is still non-discarded memory available (namely, GC_merge_-
unmapped and GC_allochblk_nth). Although the library
supports unmapping unused memory, this feature is not en-
abled by default and thus appears to have some bit rot. In
this regard, these changes could be considered bugs in the
original code base.

The Viengoos-specific changes were limited to just a single
function, GC_should_collect, in which we implemented our

scheduling policy. This was surprisingly non-invasive and in-
creases our confidence that many programs and libraries can
be easily adapted to use the type of interface that we pro-
pose, and that these changes will be integrated upstream
even before the interface is widely accepted by the commu-
nity.

5.1.1 Benchmark
We based our benchmark on the John Ellis and Pete Ko-
vac garbage collection benchmark, which was written around
1997, and ported to the Boehm garbage collector by Hans
Boehm.1 The benchmark allocates two data structures,
which remain live during the entire execution of the pro-
gram. It then enters a loop and builds a number of binary
trees of varying depths. After creating a tree, it immediately
overwrites the pointer to the root node thereby making it
available for collection.

We modified this benchmark in two ways. First, we loop
over the tree creation loop 400 times. This lengthens the
execution time, which allows us to better measure the ef-
fectiveness of the scheduler. Second, we introduced a mem-
ory hog. When enabled, approximately 45 seconds after the
benchmark starts, it allocates 10 MB of memory per sec-
ond until it has allocated half the initially available memory
(in our case, approximately 820 MB). After sleeping for 90
seconds, it then deallocates the memory, again at a rate of
10 MB per second.

To estimate the possible throughput of the adaptive sched-
uler under a mature, highly-optimized system, we added a
fixed scheduler. It acts like the adaptive scheduler except, it
assumes that a fixed amount of memory is available. For our
experiments, we fixed it to use 1.7 GB of memory. This is ap-
proximately the amount of memory available to the bench-
mark on Viengoos when there is no memory hog; when run
on GNU/Linux without a memory hog, it does not thrash.

When the memory hog runs on GNU/Linux, we also lock the
memory that it allocates. This is equivalent to the behavior
of the memory hog on Viengoos, which only allocates its
share of memory, and thus is not subject to paging. It also
matches the intent: to model the memory use of an active
program with a large working set. Alternatively, we could
have had the memory hog enter a tight loop touching all of
the memory to keep it in core. This, however, uses CPU
time, which makes comparing throughput more difficult.

5.1.2 Results
Table 2 shows the number of garbage collections, the time
spent in the garbage collector, and the execution time for
each of the eight configurations. We first note that the mod-
ified schedulers significantly reduce the time spent in the col-
lector. On both systems, when using the default scheduler,
the benchmark spends more than 50% of its time collecting.
This is reduced to less than 10% when using the adaptive or
fixed scheduler without a memory hog. These savings trans-
late to an overall decrease in execution time. We do not ex-
pect this speed-up to be typical—the benchmark specifically

1Available at http://www.hpl.hp.com/personal/Hans_
Boehm/gc/gc_bench/GCBench_OGC.cpp.

8

GC Time Time
GCs Sec. % Sec. Rel.

Vien., Adapt 134 10.2 3.6% 284.8 1.25
Vien., Adapt, Hog 223 13.4 4.4% 303.9 1.33
Vien., Def 43881 208.4 53.9% 389.0 1.71
Vien., Def, Hog 43881 214.7 53.6% 400.3 1.76
Linux, Fix 119 18.2 8.0% 228.0 1
Linux, Fix, Hog 119 50.4 12.6% 388.2 1.70
Linux, Def 42809 187.1 58.2% 321.4 1.41
Linux, Def, Hog 42809 187.3 58.9% 318.2 1.40

Table 2: Number of collections, time spent collect-
ing, and time to execute for each configuration of
the garbage collection benchmark.

0 100 200 300 400
0

100

200

300

400

Time (seconds)

C
o
m

p
le

te
d

It
er

a
ti

o
n
s

Vien., Adapt

Vien., Adapt, Hog

Linux, Fixed

Linux, Fixed, Hog

Figure 1: Time vs. iterations for the benchmark run-
ning on Viengoos and on GNU/Linux, using either
the adaptive or fixed scheduler, and with or without
a hog. Vertical lines show when the hog starts allo-
cating memory and when it has released its memory.

exercises the collector and does little actual work—however,
we suspect from [3, 32] that it will be significant.

The progress of the benchmark using the adaptive and fixed
schedulers both with and without a memory hog is depicted
in figure 1, which shows a plot of time vs. the number of
completed iterations. A straight line corresponds to steady
progress, and a steeper slope, to more work per unit time.
On Viengoos, the presence or absence of the memory hog
is hardly noticeable. This is also the case for the default
scheduler. It, however, remains unaffected by the hog simply
because it uses little memory; the cost is a 33% increase in
execution time relative to the benchmark using the adaptive
scheduler. When the fixed scheduler is used on GNU/Linux
and there is a memory hog, the garbage collector makes
essentially no progress. This is because while the memory
hog is active, the garbage collector thrashes and makes very
little progress. It is only because the memory hog releases its
memory that the benchmark even completes in a reasonable
time.

The adaptive scheduler’s adaptation to the memory hog’s
presence is shown in figure 2, which plots time vs. heap size.
We observe that as the memory hog allocates memory, the
garbage collected program decreases its allocation accord-

0 50 100 150 200 250 300
0

500

1,000

1,500

Time (seconds)

M
em

o
ry

(M
B

)

GC Avail.

GC Alloc.

Hog Avail.

Hog Alloc.

Figure 2: Time vs. memory, either allocated or avail-
able, for the benchmark and the memory hog run-
ning on Viengoos, using the adaptive scheduler.

ingly. When the memory hog again frees the memory, the
amount of available memory increases and the garbage col-
lector makes immediate use of it.

When the memory hog has reached its pinnacle, it appears
that the system reports that there is more memory available
to it than its actual share. The reason for this is that the
garbage collector maximally uses a bit less than is available
to it, and when it approaches that mark, it frees memory
until it is below a low-water mark. This free memory is
reported as available to the memory hog. If the memory
hog were to use this memory, it would not take away from
the amount of available memory reported to the garbage
collector.

5.1.3 Overhead
Table 2 shows that the benchmark using the adaptive sched-
uler on Viengoos runs 20% slower than the benchmark using
the fixed scheduler on GNU/Linux, and using the default on
Viengoos, about 15% slower than using the default sched-
uler on GNU/Linux. We do not view this as a flaw is our
resource management approach but due to the fact that the
system is not yet optimized and the use of the object capa-
bility model.

One example of an unoptimized component is the page ager.
We measured that the the system spends 4% of its time in
the page ager. One possible explanation is that the page
ager samples access bits for every frame every iteration. A
better approach would be to use exponential back off: if
a frame has not been accessed, wait two iterations before
checking it, if it has still not been accessed, wait four, etc.

The issue with the object capability model is that every ob-
ject manipulation requires an IPC. In particular, this makes
address space operations very expensive relative to the cost
on GNU/Linux. For instance, allocating and installing a
single page in the address space requires at least 2 IPCs.
On GNU/Linux, the same can be done for large numbers of
pages with just a single mmap invocation.

9

0 500 1,000 1,500
0

500

1,000

1,500

Time (seconds)

M
em

o
ry

(M
B

)
Weight 10

Weight 40

Weight 20

Figure 3: Time vs. memory for three garbage-
collected applications with overlapping execution.

5.2 Multiple Adaptive Applications
To determine how well the framework supports multiple
adaptive programs, we ran three instances of our GC bench-
mark. They were run at the same priority level but with
weights 10, 40 and 20. (The weights only affect the in-
stance’s memory allocation: currently, Viengoos simply sched-
ules the active threads’ access to the CPU in a round-robin
fashion.) Their starts were staggered: the second instance
was started 90 seconds after the first and the last instance,
180 seconds.

Figure 3 shows a plot of time vs. the amount of memory al-
located to each instance. When the system starts, the first
instance immediately uses most of the memory. When the
second instance starts 90 seconds later, the first instance
adapts. Given their weights, the first instance should now
use just a fifth of the total memory and the second, the re-
maining 80%. This is what happens: as the second grows
to its 1.2 GB share, the first instance backs off to use about
400 MB of memory. When the third instance starts after 120
seconds, the first two instances adapt appropriately. Finally,
as each instance completes, we observe similar behavior: the
remaining instances adapt to use the newly available mem-
ory.

The allocations remain within approximately 50 MB of the
expected allocations. The fluctuations are due in part to the
fact that the garbage collector is designed to release memory
to the system when it exceeds its threshold, which causes the
amount of memory reported to the others to correspondingly
increase.

Figure 4 shows how an instance’s progress changes as more
or less memory becomes available. Before another instance
starts, the first instance completes a significant number of
iterations per unit time. This drops noticeably when the
second instance starts and the first instance’s allocation de-
creases to just 20% of its prior allocation. This decreases
again when the third instance starts. When the second
instance, which uses approximately 800 MB finishes, both
instances increase the number of iterations per unit time
proportional to their new allocations.

0 500 1,000 1,500
0

100

200

300

400

Time (seconds)

W
o
rk

Weight 10

Weight 40

Weight 20

Figure 4: Time vs. amount of work completed for
three garbage-collected applications with overlap-
ping execution.

5.3 Cache Management
To verify that availability information can help when man-
aging a cache, we built a program that queries a database,
and can cache the results. We measured the throughput for
a number of fixed cache sizes as well as when the cache is
managed by an adaptive policy based on the published avail-
ability. We also ran the last configuration in the presence of
a memory hog.

5.3.1 Benchmark
The benchmark queries a database, which is managed by
SQLite 3. It contains three temporary tables each with two
columns, one containing a key and the other a value, and
1024 rows. A query consists of two selects: the first selects
a row in the first table, and the second selects a row in the
second table and joins the result’s value on the third table’s
key. Each select yields one row. This is repeated 10 times
for each query. Each resulting object is 5 MB. All bytes of
the objects are written to.

The program queries the database 100, 000 times drawing
from a pool of 1000 unique queries. We distribute the queries
according to an exponential distribution. This reasonably
approximates a long-tail distribution such as the Zipf distri-
bution, which has been observed in practice. For instance,
web pages accesses [22] and DNS lookups [8] are both known
to conform to this distribution.

The fixed-sized cache was implemented using a simple algo-
rithm: when the number of cached queries exceeds the cache
size, discard 20% of the cache in a least-recently-used fash-
ion. This is maintained by keeping all entries on a doubly
linked list sorted by access time. When an entry is accessed,
it is moved to the head of the list; when evicting entries, the
required number is taken from the end of the list.

A similar approach is taken to managing the cache in the
adaptive case: when there is pressure, we release enough
memory such that the program only uses 7/8s of the avail-
able memory.

When enabled, the memory hog begins 45 seconds after the

10

Hits Time
Hits % Sec. Rel.

348 lines 92300 92.3% 80.1 1
256 lines 82595 82.6% 144.4 1.80
64 lines 27646 27.6% 501.3 6.26
16 lines 7099 7.1% 599.7 7.49
4 lines 1962 1.9% 629.4 7.86
Adaptive 90574 90.6% 84.3 1.05
Adaptive, Hog 78230 78.2% 284.6 3.55

Table 3: The number of cache hits and the total
execution time for each configuration.

0 100 200 300
0

20

40

60

80

100

Time (seconds)

%
W

o
rk

C
o
m

p
le

te
d

384 Lines

Adapt

Adapt, Hog

Figure 5: Time vs. the word.

benchmark starts, it allocates memory, 20 MB per second,
until it has allocated 95% of the memory in the system.
After about a minute, it deallocates the memory, again, at
a rate of approximately 20 MB per second.

5.3.2 Results
Table 3 shows the results for running the benchmark in sev-
eral configurations. We first observe that as the cache size in-
creases, the hit rate increases and the throughput increases.
When using most of the system’s memory, the cache covers
approximately 20% of the objects and results in over a 90%
hit rate. Figure 5 shows the amount of work completed per
unit time. When using the adaptive cache and there is no
competition for memory, it closely tracks the performance
of the large fixed-sized cache. When there is memory pres-
sure, however, it adapts. Its performance, however, remains
proportional to the amount of memory available to it. This
change in availability is shown in Figure 6.

The effectiveness of caching is primarily dependent on the
expected access frequency and the cost of maintaining the
cache relative to the cost of computing the objects. As the
cost of computing objects increases, the importance of a
cache grows. We expect that using an adaptive cache will
help in many situations and that the benefits will be propor-
tional to these results. As our prototype becomes increas-
ingly functional, we plan to experiment with more realistic
workloads to confirm this.

5.4 Shared Memory
To test the effectiveness of using access frequency to dis-
tribute the cost of shared memory, we designed a test in
which multiple activities use a block of shared memory.

0 100 200 300
0

500

1,000

1,500

Time (seconds)

M
em

o
ry

(M
B

)

384 Lines

Adapt

Adapt, Hog

Figure 6: Time vs. memory use.

The test allocates a 4 MB block of memory (1024 pages).
It starts three threads, each using a separate activity. Each
thread executes a loop. During each iteration, a thread ac-
cesses a random number of the shared pages according to an
exponential distribution. The pages are selected randomly
according to a uniform distribution. After accessing the
pages, the thread sleeps for 10 ms. We periodically record
how many pages are charged to each activity. This includes
the data and code that the threads use, which consists of an
additional 55 pages, and is also mostly shared.

Figure 7 shows the number of frames accounted to each of
the three activities. In this case, they show that the shared
memory accounting mechanism is relatively accurate.

We ran the benchmark again without the pausing between
accessing pages. In this case, each activity is correctly ac-
counted a third of the memory. However, this is only true
over a long period of time: for each sample, almost always,
a single activity is accounted all of the memory. This is be-
cause when a thread runs, it accesses all pages in the buffer
during its time slice. Thus, the first thread to be scheduled
after the shared memory has been unmapped claims all the
memory.

We do not view this as problematic: we suspect that it is
rare that a single buffer that is shared and accessed in its
entirety needs to be correctly accounted over short periods
of time; we suspect that long-term fairness is more impor-
tant. An interesting pathological case is when the size of
the shared buffer approximates or exceeds the amount of
memory available to any single principal using it. In this
case, it is possible that one principal claims all the memory
and then, due to memory pressure, is selected to yield some
memory. Some of that memory may be scheduled for evic-
tion. However, as it is not immediately discarded, when the
next activity uses the buffer, it will claim the memory.

In practice, we suspect that the main use of shared memory
will be shared binaries and data. Some code, such as the
string routines provided by the standard C library, will be
used often and by many. The problem then is that as we
unmap shared objects to detect other users, using a shared
object introduces additional soft page faults.

Our current strategy for determining the use of a shared

11

0 50 100 150 200

0

200

400

Time (seconds)

F
ra

m
es

Figure 7: Time vs. the number of frames accounted
to an activity.

Iterations Time (µs) Iter. / µs
Unmap
Thread 210,144,069 198,468,750 1.0588
Thread 210,292,589 198,500,000 1.0594
Thread 210,377,718 198,484,375 1.0599
Total 630,814,376 1.0594
No unmap
Thread 210,590,608 198,468,750 1.0611
Thread 210,746,341 198,500,000 1.0620
Thread 210,857,024 198,484,375 1.0623
Total 632,193,973 1.0618

Table 4: The number of iterations per µ−second
when shared memory is either periodically un-
mapped or not.

page is to simply tear down all mappings. A better approach
would be to mark the PTEs corresponding to a shared page
as invalid, and, mark them all as valid after the page is again
claimed. This eliminates any tear down and reinitialization
costs and reduces the number of soft page faults.

To determine the cost of accounting the shared memory, i.e.,
the cost of the soft page faults and the additional claiming,
we ran the previous experiment two more times. This time,
we again did not include a pause. Also, for one run, we dis-
abled unmapping shared pages. Each instance ran for just
under 200 seconds. Table 4 shows the number of iterations
of the main loop for each thread, the total time each thread
ran and the average iterations per microsecond. The time
measurement has an accuracy of plus or minus 10 millisec-
onds. When not unmapping memory, we observe a 0.23%
increase in throughput. In this experiment, we only used
4 MB of memory, which was unmapped every 2 seconds. If
more memory is shared, the costs will grow proportionally.

6. RELATED WORK
Waldspurger presents a comprehensive treatment on using
proportional share mechanisms to schedule resources in [30].
He reifies resource rights by way of so-called tickets, which a
principal uses or delegates to other computations (i.e., other
principals) that it wishes to fund. This abstraction allows
a single computation to be funded by multiple principals.
His focus is primarily on scheduling CPU time, however, he
also briefly considers memory. He notes that memory is un-
like CPU in that its management is based on revocation and
not allocation and thus traditional scheduling algorithms are

not appropriate. He proposes a minimum-funding revocation
scheduler : when memory needs to be reclaimed, the mem-
ory manager selects the principal that provides the fewest
number of tickers per frame. He presents results from a
simple simulation; no implementation is provided, however.
Waldspurger also does not consider feedback in this work
nor does he discuss how to account shared memory.

In [31], Waldspruger presents the balloon driver, a sim-
ple mechanism allows the VMM to dynamically reallocate
memory among guests by coercing unmodified guest oper-
ating systems to adapt to their new allocation. The idea
is simple: the balloon driver is an operating-system-specific
driver that communicates with the virtual machine monitor
(VMM) through a private channel. It allocates and releases
operating system’s memory according to the VMM’s instruc-
tions. These allocations cause the operating system to use
its normal adaptation mechanisms, which exploit operating-
system-specific knowledge, to make memory available for the
driver. Ignoring trust issues, we are interested in pushing
these types of interactions down another layer and exploit-
ing application-specific knowledge. As applications are the
direct users of memory, they have significantly more seman-
tic knowledge of how it is used.

Alonso and Appel have garbage collectors provide their col-
lection parameters directly to the memory manager, which
responds with how the application should size its heap [1].
This is not a general solution. Indeed, it is not even a solu-
tion for managed run-times as it assumes a particular collec-
tor implementation. Also, it is designed to globally minimize
collector overhead; it does not consider preferences.

Yang et al. argue that GC applications perform better when
they use all available memory [32]. They observe that to do
this in a dynamic environment requires feedback to avoid
thrashing. The paper makes two contributions. First, the
authors describe how to estimate the amount of memory
required to perform a collection using a copy collector. Sec-
ond, they describe an availability metric: ‘process’s current
allocation’ plus ‘free/unused system memory’. They demon-
strate that their approach works well for a single adaptive
program. They also run a benchmark that shows that multi-
ple adaptive applications can run on their system, however,
they lack a mechanism to effectively distribute free memory,
which they note is a subject for future work.

Iyer et al. present a so-called severity metric, which sum-
marizes memory pressure and the cost of paging [21, 20]. If
severity is low, there is free memory and applications may
grow; if it is medium or high, applications should shrink.
The authors recommend that applications grow or shrink
by tens of MBs of memory per second until the severity
metric reports normal. As the severity metric summarizes
the cost of paging, an application can determine whether to
free memory given the cost to regenerate the content. To
distribute memory among multiple applications, the sever-
ity metric is scaled by the application’s ‘nice’ value. This
scaling is contrary to the metric’s intended use, which is to
determine whether to free memory or to have it paged.

Significant work has been done exploring how to allow ap-
plications to better manage the resources available to them.

12

V++ [17], exokernel [13], Nemesis [15] and SawMill [4] ex-
port physical resources and use visible revocation to allow
programs to use application-specific knowledge to manage
their resources. The question of how to distribute resources
among multiple computations is unanswered by exokernel
and Nemesis. Indeed, the exokernel architects state that
the appropriate policies are “determined more by the envi-
ronment than by the operating system architecture” [13].

On V++, memory is distributed using a market-based ap-
proach [16]. The system page-cache manager maintains a
bank account for each top-level principal. Sub-accounts
can be created yielding a hierarchy of accounts. Memory
is leased for a certain amount of time. There are three types
of lease requests: high priority, normal priority and low pri-
ority. The cost of each type of lease is fixed. A high-priority
lease costs more than a normal priority lease; and, a low-
priority lease does not cost anything but may be terminated
early. This fixed-cost scheme was chosen as variable prices
appeared too hard for programmers to reason about. Their
scheme does not consider shared memory.

SawMill [4] tries to push policy decisions as close to ap-
plications as possible. To this end, it uses a distributed
approach to managing memory: physical resources are dis-
tributed and visible revocation is used to revoke them. The
authors do not describe how resources can be efficiently al-
located among multiple children or good policies to reclaim
them. This necessarily imposes some policy. In a general-
purpose system, some de facto policy would develop simply
because multiple applications must negotiate resource allo-
cations. Also, as applications will often have memory from
multiple sources, e.g., an anonymous memory server and a
file server, and revocation is done hierarchically, the appli-
cation will be limited in what it can revoke to the memory
that it received from the provider requesting memory be re-
turned, i.e., memory becomes less fungible thereby reducing
flexibility.

7. CONCLUSIONS
General-purpose operating systems do not support memory-
adaptive applications. As we have shown, memory adap-
tations can significantly increase the performance of pro-
grams using garbage collection and caches of computed data.
These adaptations are becoming more important given trends
to increase use of consolidation and the wider range of con-
figurations that users expect their applications to run on,
e.g., smart phones.

This paper makes three contributions. We have presented
the design and implementation of a minimum-funding re-
vocation memory scheduler. We have shown how to com-
pute how much memory is available to each resource princi-
pal thereby enabling informed and timely adaptations. We
have also presented a mechanism to account shared memory
based on access frequency. Our benchmarks show that the
algorithms are effective for controlling adaptations in the
face of changing resource availability. Moreover, they are
effective at allocating memory among multiple aggressively-
adaptive memory applications.

8. REFERENCES

[1] R. Alonso and A. W. Appel. An advisor for flexible
working sets. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 153–162, 1990.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler activations: effective kernel
support for the user-level management of parallelism.
In Proceedings of the Thirteenth ACM SOSP, pages
95–109, 1991.

[3] A. W. Appel. Garbage collection can be faster than
stack allocation. Information Processing Letters,
25(4):275–279, 1987.

[4] M. Aron, L. Deller, K. Elphinstone, T. Jaeger,
J. Liedtke, and Y. Park. The SawMill framework for
virtual memory diversity. In 8th Asia-Pacific
Computer Systems Architecture Conference, Bond
University, Gold Coast, QLD, Australia, Jan. 2001.

[5] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management in
server systems. In Proceedings of the 3rd USENIX
OSDI, Feb. 1999.

[6] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Softw. Pract. Exper.,
18(9):807–820, 1988.

[7] J. Bonwick. The slab allocator: An object-caching
kernel memory allocator. In USENIX Summer, pages
87–98, 1994.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
Evidence and implications. In Proceedings of Infocom
1999, pages 126–134, 1999.

[9] C. M. Chen and N. Roussopoulos. The implementation
and performance evaluation of the adms query
optimizer: integrating query result caching and
matching. In EDBT ’94, pages 323–336, 1994.

[10] M. E. Crovella and A. Bestavros. Self-similarity in
world wide web traffic: evidence and possible causes.
IEEE/ACM Trans. Netw., 5(6):835–846, 1997.

[11] P. J. Denning. The working set model for program
behavior. Communications of the ACM,
11(5):323–333, May 1968.

[12] J. B. Dennis and E. C. Van Horn. Programming
semantics for multiprogrammed computations.
Communications of the ACM, 9(3):143–155, Mar.
1966.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr.
Exokernel: An operating system architecture for
application-level resource management. In 15th ACM
SOSP, pages 251–266, Dec. 1995.

[14] C. Fleck. What’s the coolest app that doesn’t work on
the iPhone yet ? http://community.citrix.com/
pages/viewpage.action?pageId=51937665, Dec. 20,
2008.

[15] S. M. Hand. Self-paging in the nemesis operating
system. In 3rd OSDI, pages 73–86, 1999.

[16] K. Harty and D. Cheriton. A Market Based Approach
to Operating System Memory Allocation, pages
126–155. World Scientific Publishing, River Edge, New
Jersey, 1996.

[17] K. Harty and D. R. Cheriton. Application-controlled
physical memory using external page-cache
management. In ASPLOS-V, Oct. 1992.

[18] K. Hazelwood and M. D. Smith. Managing bounded
code caches in dynamic binary optimization systems.
ACM Trans. Archit. Code Optim., 3(3):263–294, 2006.

[19] D. Hull, W. Feng, and J. W. S. Liu. Operating system
support for imprecise computation. In AAAI Fall
Symposium on Flexible Computation, Nov. 1996.

[20] S. Iyer. Advanced memory management and disk
scheduling techniques for general-purpose operating
systems. PhD thesis, Rice University, Houston, Texas,

13

November 2005.
[21] S. Iyer, J. Navarro, and P. Druschel.

Application-assisted physical memory management.
Technical report, Rice University, 2004.

[22] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. Dns
performance and the effectiveness of caching.
IEEE/ACM Trans. Netw., 10(5):589–603, 2002.

[23] H. Levy and P. Lipman. Virtual memory management
in the VAX/VMS operating system. IEEE Computer,
15(3):35–41, 1982.

[24] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and
R. Sohan. Melange: creating a “functional” internet. In
EuroSys 2007, pages 101–114, Mar. 2007.

[25] J. Nielsen. Usability Engineering. Morgan Kaufmann,
San Francisco, 1994.

[26] S. Peter, A. Baumann, T. Roscoe, P. Barham, and
R. Isaacs. 30 seconds is not enough! A study of
operating system timer usage. In EuroSys 2008, April
2008.

[27] T. Roscoe. The Structure of a Multi-Service Operating
System. PhD thesis, University of Cambridge, Aug.
1995.

[28] J. S. Shapiro and N. Hardy. EROS: A principle-driven
operating system from the ground up. IEEE Software,
19(1):26–33, 2002.

[29] M. Stonebraker. Operating system support for
database management. Communications of the ACM,
24(7):412–418, July 1981.

[30] C. A. Waldspurger. Lottery and Stride Scheduling:
Flexible Proportional-share Resource Management.
PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1995.

[31] C. A. Waldspurger. Memory resource management in
VMware ESX server. In 5th OSDI, Dec. 2002.

[32] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss. Cramm: Virtual memory support for
garbage-collected applications. In 7th OSDI, Nov.
2006.

14

