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Abstract

Commodity operating systems fail to meet the secu-
rity, resource management and integration expectations
of users. We propose a unified solution based on a ca-
pability framework as it supports fine grained objects,
straightforward access propagation and virtualizable in-
terfaces and explore how to improve resource use via ac-
cess decomposition and policy refinement with minimum
interposition. We argue that only a small static number of
scheduling policies are needed in practice and advocate
hierarchical policy specification and central realization.

1 Introduction
Commodity operating systems provide inadequate pro-
tection mechanisms preventing users from articulating
some useful security policies; they expose resource ab-
stractions which, in hiding resource multiplexing, reduce
efficiency, limit application adaptability and impede the
realization of real-time properties; and they lack extensi-
bility, reducing consistency of mechanism and integra-
tion. Although the research community has explored
these problems individually, the resulting models often
ignore one of these concerns limiting applicability.

We have chosen an object capability system as our
foundation. By conflating designation and authorization,
thereby eliminating principal identifiers and shared name
spaces, such a system enables fine grained authorization
and simplifies access propagation. This is necessary for
the dynamic realization of the principle of least privi-
lege (POLP). Its virtualizability enables better integra-
tion by permitting untrusted extensions without necessi-
tating parallel worlds. To enable better use of resources,
we explore how to decompose authority and refine policy
without expensive and inaccurate interposition.

2 Motivation
2.1 Security and Protection

When Alice launches a program on a commodity operat-
ing system, the program instance typically runs with her
full authority. A web browser, although its core function-
ality only depends on a network connection, a window on
which to render content and a fixed number of resources
known in advance, has access to all of her resources and
can even control other program instances running on her
behalf. Alice has no protection from unauthorized dis-
closure, tampering or disruption of service.

Although Alice may have learned through experience
to trust her web browser, it operates on externally sup-
plied data and loads plug-ins. It also contains bugs [22].
By finding a weakness in the code which processes ex-

ternal input, an attacker is able to confuse Alice’s web
browser and gain all of her authority. Such attacks are so
easy, these compromised machines, so-called bots, can
be purchased on the black market for $0.04 each [30].

2.2 Resource Management

Commodity operating systems transparently manage
scarce resources, ostensibly relieving applications of this
complexity. The exposed resource abstractions, however,
have loose access characteristics, i.e., a large gap be-
tween average and worst case access times, frustrating
application efforts to maximize performance and realize
real-time properties.

2.2.1 Efficient resource usage

The ever increasing performance gap between backing
store and main memory makes paging increasingly ex-
pensive. Many applications possess information which
can significantly improve scheduling but is inaccessible
to a scheduler which only monitors behavior.
Performance Garbage collectors and databases are two
classes of applications evaluated against the clock. Al-
though these applications often have access patterns
which differ significantly from those which the operat-
ing system can detect and some are able to predict their
own access patterns, exploiting this local information re-
quires either having closely guarded privilege to use, e.g.,
mlock, or relying on implementation details [29, 1, 16].
Although extensions exist to provide mechanisms for ap-
plication input, they are not expressive, e.g., madvise,
or cooperative, making the memory manager vulnerable
to malicious applications [16].
Caching Many applications are able to save a signifi-
cant number of CPU cycles as well as power by caching
calculated data and intermediate results for opportunistic
reuse. As the data is often large, e.g., a decompressed
JPEG, there is a significant opportunity cost associated
with such caching: the data occupies memory possibly
causing more valuable data to be paged; and the operat-
ing system may page the cached data which may be more
expensive than simply recomputing it on demand.

Because commodity operating systems provide no
way for applications to prevent this paging and because
applications do not know how much memory is idle,
they must act conservatively. GQView, a popular im-
age viewer for GNOME, maintains, by default, a 10 MB
cache of rendered images [11]. gThumb, another image
viewer for GNOME, keeps a static cache of four images
and preloads the image following and that previous to
the requested image [4]. Neither application pro-actively
frees its cache.
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Nokia, in the development of their Internet Tablet plat-
form, Maemo, acknowledged this problem and intro-
duced a feedback mechanism, an event source, allowing
cooperative applications to obtain global contention and
to adapt their resource use accordingly [21].
Virtualization Virtual machine monitors (VMMs) are
currently used for resource consolidation with compart-
ments sometimes requiring guaranteed levels of quality
of service [33]. They are also being used as an isola-
tion mechanism for the enforcement of security policies
[23]. As this technology is improved, it is plausible that
it will be applied at a finer granularity and made avail-
able to users. This will require mechanisms for limited
breaching of the isolation barrier to enable composition
and collaboration. (Such VMMs would increasingly re-
semble reference monitors [2].) To provide quality of
service and enable efficiency, such a scheme would re-
quire that resources be strictly accounted, easily decom-
posed, delegatable and dynamically reallocatable.
Engineering and economy of scale Devices, especially
consumer electronics, are being increasingly sold based
not on their resource abundance but on their function-
ality. This is in tension with the desire to reduce en-
gineering costs by using commodity operating systems
with moderate increases in resource requirements rela-
tive to more specialized systems. One might expect such
a tradeoff to be quickly mitigated by the ever increasing
abundance of processing power and memory and their
respective decreases in cost. Contrariwise, Linksys re-
cently revised their popular router to use vxworks in-
stead of GNU/Linux and were able to halve the 16MB
RAM and 4MB of flash thereby increasing profitability
despite the engineering costs [20]. This argument, that it
is significantly cheaper to improve the software than to
increase the available resources, has also been made by
the developers of the One Laptop Per Child project [13].

2.2.2 Real-time properties

Real-time and adaptive applications need a mechanism
to obtain statistical guarantees regarding resource sched-
ules [9]. Although POSIX provides mechanisms such
as mlock to allocate physical memory, this privilege
is closely held to prevent misuse and abuse. Yet, few
commodity applications actually require such firm guar-
antees. To work around this deficiency, application de-
velopers often take advantage of implementation details.
Reliance on this is problematic as the behavior is not
part of the API contract and can change. The authors
of Cedega, a Windows emulator for games, encountered
this when Linux’s CPU scheduler was modified [31].

2.3 Integration

Integration depends on uniform access mechanisms. One
of the most visible interfaces is the virtual file system

(VFS). Normally, users are not able to provide new im-
plementations or start new file system instances which
integrate into the VFS as this is normally only available
to programs running in the kernel. Although it is possi-
ble to upload code into the kernel, it is undesirable as it
is not able to be constrained.

This situation has led to the development of parallel in-
terfaces. The GNOME project’s GnomeVFS and KDE’s
KIO-Slave both expose a new VFS to to their respec-
tive applications so as to more seamlessly integrate inter-
esting file systems such as those accessible over ftp and
ssh. Yet these technologies are, at best, only half inte-
grated: an application that does not make use of, e.g.,
the KDE VFS exposes a very different file system lay-
out. The Linux developers have also acknowledged this
and recently introduced an API to allow users to safely
provide their own file systems running in user space.

3 A System Structure
We have selected a capability based framework [7, 34,
15, 27, 12] as it appears to provide the necessary founda-
tional mechanisms. The power of capabilities lies in their
bundling of authorization and designation. This permits
fine grained objects and enables access to be propagated
in a single step unlike, e.g., on an ACL based system
where designation and authorization are separated, frus-
trating delegation [19].

Below, we briefly address how capabilities help solve
the aforementioned problems and outline the additional
mechanisms required to build a system.

3.1 Protection and Security

On commodity operating systems, programs run with all
of the authority of the user who started them. This is
excessive. A more secure mode of operation would be
one where users are able to delegate just the authority a
program instance requires to carry out their intent, the
principle of least privilege (POLP) [24]. Thus, when a
program goes awry, damage would be restricted to those
resources to which it has access.

Although it is technically possible to achieve such
controlled sharing, e.g., on Unix using an additional UID
and chroot, it is so unwieldy to configure as to be used
only by experts in special scenarios. A successful mecha-
nism must be consistent with the principle of fail-safe de-
faults: it must be the default and require effort to violate
[24]. In addition, for interactive programs where a rea-
sonable minimum authority cannot be calculated a priori,
it must be straightforward for the user to delegate addi-
tional access rights after it has started, dynamic POLP.

Capability systems can provide this with the help of
a so-called powerbox [28, 25]. Instead of creating an
open or save dialog, the application invokes the user’s
trusted powerbox, which, having all of the user’s author-
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ity, interacts with the user and then delegates access to
the selected resources to the program. This change is
largely invisible to users and applications.

As capabilities are held by processes, a mechanism
needs to be provided for their recovery, for programs to
be able to restore their configuration on system restart. A
desktop manager, for instance, would like to remember
what programs were running; applications would like to
record resources in use. This configuration management
problem is referred to as trusted recovery [8] and is ig-
nored by commodity operating systems as all of a user’s
programs run in the same trust domain.

Currently, applications store file names, however, this
requires that program instances run with the full author-
ity of the user in violation of POLP. Having program in-
stances remember delegations and replay them on restart
is fragile and complicated by the fact that delegations are
made to program instances and several instances of a pro-
gram may run in different trust domains. Instead, this
problem can be circumvented by making the system per-
sistent: the access graph need, then, never be recreated.
Although seemingly overkill, this is already the aim of
desktop managers and is directly realized by many lap-
tops and an increasing number of desktops in the form of
suspend or hibernate. To this end, EROS uses a single
level store to realize orthogonal persistence [26]. An-
other approach is exportable state [32, 14].

3.2 Resource Management

More effective use of resources can be achieved by pro-
viding resources with tighter access characteristics, ex-
posing the resource schedule and inexpensive decompo-
sition and delegation. We temper the solution space with
the requirement that mechanisms and policies must also
be safe. To achieve this, we prefer specificity over gen-
erality through the elimination of unmotivated function-
ality. This is in contrast to extensible kernels whose em-
phasis is on generality, which has been criticized as in-
troducing unjustified complexity frustrating safety [10].

Exokernels, a class of extensible kernels, aim to se-
curely export physical resources at as fine a granularity
as possible and hide as few policy decisions as feasible
including resource revocation [18]. To achieve this, an
exokernel uses so-called visible revocation. We observe
two shortcomings with this approach.

When an application is chosen to yield memory, it re-
ceives an upcall and is given a set amount of time to
return some amount of memory. To avoid creating a
functional dependency on the correct behavior of appli-
cations, the kernel must impose a deadline. When this
is too short, an otherwise correct application will gener-
ate a spurious fault. When this is too long, a malicious
application may be able to induce a denial of service.
Although spurious faults can be avoided by taking the

position that all code in the page-out path must be hard
real-time capable, writing correct real-time capable code
is notoriously difficult and it induces conservative behav-
ior reducing the possibility of best effort optimizations.

Second, because managing resources requires re-
sources that the kernel may choose to reclaim at any
time an application must make provisions to allow a third
party to manage these latter resources on its behalf.

These shortcomings motivate the reintroduction of
transparent paging and could be viewed as a failure of
exokernel principles to generalize. We sacrifice general-
ity and instead aim to allow applications to drive resource
management in a consistent, straightforward fashion.
Distribution Policy There are three parties interested in
specifying scheduling policy on others: supervisors, de-
velopers and users.

A system administrator would like the available re-
sources to be distributed according to some rather static
fairness property among users and the various system
services (or VMMs). This should not be understood to
mean that the allocations are static but that the allocation
policy changes relatively infrequently.

Developers who build systems with a number of ac-
tivities generally statically assign priorities to them. A
multimedia player or game engine, for instance, would
assign the audio decoder a higher priority than the video
decoder as people are more sensitive to audio jitter.

Users, to ensure that they always remain in control,
have as their top priorities the event input thread and
the window manager. These trusted applications would
be run under a highest priority first (HPF) regime. The
balance would be aggregated under a lower priority and
scheduled according to, e.g., a proportional share policy.

The distribution of priorities among these applications
depends on a user’s priorities, i.e., it is a function of real
world tasks and goals. Having the user change appli-
cation priorities manually is cumbersome. Fortunately,
priorities can often be inferred from a user’s actions. The
application with the focus likely has a high importance to
the user and should therefore have a high priority. Min-
imized applications are likely less important. For some
applications, e.g., an audio player, the user may desire
a permanently high priority independent of their respec-
tive window states. To accommodate this, the user must
have the possibility to override the priority which can
be remembered by the window manager. The distribu-
tor could also provide hints about the appropriate policy.

We postulate that a small number of fixed policies is
sufficient for most useful scheduling scenarios.
Multiplexing Policy As resources are scarce, applica-
tions have an interest in multiplexing what is available:
determining how CPU is used and which data is held in
memory. This can be achieved with scheduler activations
[3] and providing control over the eviction policy.
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Additionally, applications which need to articulate
scheduling parameters such as duration and jitter, in par-
ticular, real-time and adaptive applications, also need to
be supported via, e.g., imprecise computation [17].
Framework In none of the presented distribution scenar-
ios does the parent process need to participate in admis-
sion or allocation: it is sufficient for it to describe a pol-
icy. Likewise, applications do not generally care what the
controlling policy is: they request schedules which are
either admitted or not. As such, we allow policy to be ar-
ticulated hierarchically but centralize admission control
and scheduling thereby circumventing the process hier-
archy for the realization of this mechanism.

By separating the specification of policy from schedul-
ing, the latter can be determined quickly and more accu-
rately. A highly nested process need not request a sched-
ule from its parent which must translate the request to its
parent’s vocabulary, etc.; it directly requests a schedule
from the system scheduler. Likewise, when the sched-
ule must be changed either due to policy (based, e.g., on
contention) or due to a policy change, schedules can be
quickly recalculated and processes directly informed.

As the scheduling hierarchy can be complex, the cal-
culation of schedules can become complicated. We con-
tend, however, that policy change is relatively infrequent
compared with admission requests and resource usage
reducing potential overhead.

Adherence to schedules as well as reduction of cross
talk require accurate resource accounting of both the re-
sources a principal directly uses as well as those it indi-
rectly uses, i.e., those allocated by servers on its behalf.

To achieve this, we introduce a mechanism, resource
pools, similar to EROS’s space banks [26] and resource
containers [5]. We account memory and backing store
individually, unlike EROS.

A resource pool specifies a scheduling policy for re-
sources allocated against it. A new pool can be derived
from an existing pool and delegated. The policy applied
to the derived pool can refine the policy imposed by the
parent. As such, resource pools form a hierarchy and
children are strictly dominated by their parents.

Resource pools are used for controlling inferior pro-
cesses. A process derives a resource pool from its own
and specifies any scheduling parameters. It then runs the
child out of this inferior pool and passes it a weakened
form, which does not allow control of the scheduling pol-
icy. The child allocates all resources out of this pool. At
any time, the parent can destroy the derived pool and,
in doing so, destroy the child and everything that it allo-
cated including temporary files and other processes.

Pools are also passed to servers when the server must
allocate resources on behalf of a client, e.g., memory for
session state (although, we try to avoid sessions when
possible). This improves the ability of the server to honor

any quality of service guarantees and provides a way for
the client to reclaim resources if the server misbehaves.
Revocation When a process’s schedule has changed, ac-
tion may need to be taken to reclaim resources. For in-
stance, when a process’s memory allocation is reduced,
pages may need to be saved. Similarly, when resources
need to be multiplexed, a scheduling decision must be
made. Allowing applications control of this policy is es-
sential to exploiting local information, improving perfor-
mance and meeting real-time requirements.

We have noted that rendered data can be recomputed
without loss of information and, thus, can be discarded
without negative consequences. Caching this data in idle
memory is desirable as it can significantly improve best-
effort applications. As commodity operating systems are
unable to distinguish this memory from normal anony-
mous memory, they must page it.

We propose two mechanisms which permit the mem-
ory manager to be able to distinguish such data and to
be able to discard it with no negative consequences. We
introduce a function which allows applications to mark
data as being discardable. This allows the memory man-
ager to simply discard it when it is chosen for eviction.
When a thread next accesses the virtual memory region,
it receives a fault indicating what has happened allow-
ing the application to recompute the data. These mech-
anisms never require that the memory manager wait on
a response from the application: when the application
must act, it is in response to a fault.

To allow increased control of how the rest of mem-
ory is paged, i.e., the eviction policy, the application as-
signs priorities to allocated memory. When the manager
evicts a page, it selects the lowest priority page. If there
are multiple pages, then it selects the one approximately
least recently used.

When a page is evicted, the application can request
to receive an event the next time it is scheduled. This
requires resources for the manager to hold which page
was evicted necessitating care. When the virtual memory
is again referenced, the operating system can send a fault
to the application or transparently page it back in.

3.3 Integration

Capability systems enable fine grained virtualization:
whether a kernel or user object, its methods are accessed
using the same mechanism, capability invocation. Fur-
ther, as each service is typically encapsulated by a differ-
ent object, a single service can be proxied, extended or
monitored without imposing overhead on other services.

4 Conclusion
We have identified a number of problems with commod-
ity operating systems: they fail to provide adequate pro-
tection; their resource management strategies lead to in-
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efficient resource use and cannot be effectively used in
meeting real-time properties; and they lack integration.

We propose a class of operating systems which may
be able to solve the most egregious of these. Based on
a capability framework, such a system permits the re-
alization of dynamic POLP and virtualizable interfaces.
To improve resource scheduling, we provide applications
with more control over the scheduling policy. We argue
that only a small number of scheduling policies are re-
quired in practice. Thus sacrificing generality for safety,
we permit applications to articulate scheduling policy to
a centralized scheduler. This permits access decomposi-
tion and policy refinement without process interposition.

We acknowledge that radical new designs will not be
accepted if users cannot run even one or two of their
legacy applications. The Hurd, another multi-server sys-
tem, successfully provided a high degree of API compat-
ibility via a so-called fat C library which implemented
the legacy interfaces in terms of Hurd mechanisms [6].
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